Transpositions Tuesday, June 29, 2021 3:29 PM
In the previous video we have seen the following properties
of symmetric group:
Cycle decomposition. Every non-identity element of Sn can
be written as a product disjoint cycles and this decomposition
is unique up to reordering the cycles.
The linking relation Suppose a; 's are pairwise distinct
elements of [1n]. Then
$(\alpha_1, \dots, \alpha_m)(\alpha_m, \alpha_{m+1}, \dots, \alpha_n) = (\alpha_1, \dots, \alpha_n).$
· A 2-cycle (a,a) is called a transposition.
Lemma. Every cycle can be written as a product of
transposition.
Pf. By induction on m, we prove that if a;'s are
pairwise distinct, then
$(\alpha_1,, \alpha_m) = (\alpha_1, \alpha_2) (\alpha_2, \alpha_3) (\alpha_{m-1}, \alpha_m)$
The base case of m=2 is clear. (the linking relation)
Induction Step. $(a_1,, a_m, a_{m+1}) = (a_1,, a_m) (a_m, a_{m+1})$

Transpositions Tuesday, June 29, 2021 By the induction hypothesis $(a_1,...,a_m) = (a_1,a_2)...(a_{m-1},a_m)$, and so $(a_1, a_2, ..., a_{m+1}) = (a_1, ..., a_m)(a_m, a_{m+1})$ $= (\alpha_1, \alpha_2) \cdots (\alpha_{m-1}, \alpha_m) (\alpha_m, \alpha_{m+1}).$ This completes the proof. Proposition. Every permutation can be written as a product of transpositions. Pf. Suppose of Sn. Then there are cycles of, ..., of such that o= o, ... or (by the cycle decomposition). By the previous lemma, each of can be written as a product of transpositions. Hence o can be written as a product of transpositions. Notice that a permutation can be written as a product of transpositions in many ways. In order to give

of transpositions in many ways. In order to give interesting examples, let's recall that for every $\sigma \in S_n$ $\sigma(a_1,...,a_m)$ $\sigma^{-1} = (\sigma(a_1),...,\sigma(a_m))$. Let's also point out that $(a_1,a_2)(a_1,a_2) = id$, and so if T

Transpositions Tuesday, June 29, 2021 3:29 PM
is a transposition, then $\tau^2 = id$; hence $\tau^{-1} = \tau$.
Using these relations we obtain that
(4 0) (4 2) (4 0) (7(4) 7(2)) (0 2)
(1,2)(1,3)(1,2) = (T(1), T(3)) = (2,3)
This is an example of writing a permutation as a
product of transpositions in different ways. An amazing
fact, however, is that if
$\mathcal{T}_{1}\mathcal{T}_{2}\cdots\mathcal{T}_{n} = \mathcal{O}_{1}\mathcal{O}_{2}^{2}\cdots\mathcal{O}_{m}^{n}$
and Ti's and Oj's are transpositions, then m=n;
this means either both m and n are odd or both of them
are even. (We say m and n have the same parity.)
Theorem. Suppose T,,, T, O,,, on are transpositions.
If $T_1 \dots T_n = O_1 \dots O_m$, then $m \equiv n \pmod{2}$.
Pf. Notice that since of 's are transposition, of $= 0$.
for every i. Hence $(\sigma_1 \cdots \sigma_m)^{-1} = \sigma_m^{-1} \cdots \sigma_1^{-1} = \sigma_m \cdots \sigma_1$. Thus
$T_1 \cdots T_n = \sigma_1 \cdots \sigma_m$ implies that $T_1 \cdots T_n \sigma_m \cdots \sigma_1 = id$.
Notice that $m \stackrel{?}{=} n$ if and only if $m+n \stackrel{?}{=} o$. Hence

Parity of permutations Tuesday, June 29, 2021 3:29 PM
If we show that identity cannot be written as a product
of an odd number of transpositions, then
7700 = id. implies that $m+n$ is even. So $m=n$.
m=n.
Therefore it is enough to prove the following claim:
Claim Suppose 8, , , , & are transpositions and
$\gamma_1 \cdots \gamma_k = id$. Then $2 \mid k$.
, ,
Pf of Claim. We introduce a process with the following
properties:
1. The number of appearance of the largest number in
the cycle form of transpositions decreases.
2. The number of transpositions either stays the same or
drops by 2; in either case the parity of the number of
transpositions stays the same through out this process.
Notice that because of 1 at the end no transposition
will be left. Hence the final number of transpositions is o
•

Parity of permutations Tuesday, June 29, 2021 3:29 PM
Because of 2, the parity of the number of transpositions
does not change. Hence the parity of the initial number k of
transposition is the same as the parity of the final
number of transpositions. Since at the end there are no
transpositions, we conclude that k is even.
Suppose m is the largest number that appears in the
(support of) transpositions %; 's.
We want to move all the transpositions that
have m in their support toward left of this multiplication.
_ If two transpositions are disjoint, then they commute . # of transpositions
$-(\alpha,m)(\alpha,m) = id. \longrightarrow drop by 2$ $- \# ef m's decreases$
$-(a,m)(b,m) = (a,m)(m,b) = (a,m,b) \xrightarrow{*} \text{* of transpos.}$ stays the same.
$= (m, b, a) = (m, b) (b, a) \cdot \# \text{ of m's decrease}$
(a,b)(a,m) = (b,a)(a,m) = (b,a,m) + of transp.
= (m, b, a) = (m, b) (b,a). transp. that have m are more to left.

Parity of permutations

Tuesday, June 29, 2021

3.29 PM

This process will terminate at some point. At the final state we cannot have more than one transpositions with m in their support. Because all these transpositions are on the left and if there are two such transpositions, they are either identical (m,a), (m,a) and we use (m,a) (m,a) = id., or they are (m,a) (m,b), then we use (m,a)(m,b) = (a,m)(m,b) = (a,m,b)= (m,b,a) = (m,b)(b,a).We also notice that we cannot have only one transposition with m. Because in this case (m,a) & & ... by sends m to a (Notice that θ_i (m) = m, and so $m \mapsto m \mapsto m \mapsto m \mapsto m \mapsto a$ This contradicts the assumption that this product is the identity. Hence at the end of this process m disappears from the involved transposition without changing the parity

of the number of transpositions. This completes the pf.

Parity of permutations

Tuesday, June 29, 2021

Def. An element or of S is called odd if it can be

written as a product of odd number of transpositions, and

it is called even if it can be written as a product of even

number of transpositions. We let

$$sgn: S_n \to \{1, -1\}, sgn(\sigma) = \begin{cases} 1 & \text{if } \sigma \text{ is even} \\ -1 & \text{if } \sigma \text{ is odd.} \end{cases}$$

sgn(or) is called the sign of or.

Notice that (\{\frac{2}{4},-1\frac{2}{6}\), is a group.

Theorem. $Sgn: S_n \rightarrow \frac{3}{2}1,-13$ is a group homomorphism.

Pt. Suppose o, TES, and o= o, ...on, T= T,...Tm

where of, ..., on, 7, ..., 7 are transpositions. Notice

that $Sgn(\sigma) = (-1)^n$ (it is 1 if n is even, and it is

1 if n is odd.) and sgn (T)=(1). We also observe

that OT=0,...on T,...Tm can be written as a prod

of m+n many transpositions. Hence sgn(OT) = (-1)

Because $(1)^{m+n} = (1)^m (-1)^n$, we obtain that

 $sgn(\sigma\tau) = sgn(\sigma) sgn(\tau)$. This completes the proof.

Parity of permutations Tuesday, June 29, 2021 3:29 PM
Notice that $ker(sgn) = \frac{2}{5}\sigma \in S_n sgn(\sigma) = 1\frac{2}{5}$
= {oeSn o is even }
Hence 3 0 ∈ Sn or is even g is a subgroup of Sn.
This subgroup is called the alternating group, and it is
denoted by An.
Ex. Suppose $o = (a_1,, a_m)$ is an m-cycle. When is
or odd or even?
Solution. Using the linking relation we have
$(\alpha_1,, \alpha_m) = (\alpha_1, \alpha_2)(\alpha_2, \alpha_3) \cdots (\alpha_{m-1}, \alpha_m).$
Hence an m-cycle is a product of m-1 transpositions.
Therefore an m-cycle is even exactly when m is odd.
Ex. The parity of or and its conjugates are the same.
Solution. For every TES, (because
$sgn(\tau \circ \tau^{-1}) = sgn(\tau) sgn(\sigma) sgn(\tau)^{-1} sgn is a$
= Sgn (0') \\ \{\frac{21}{1}, -1\}{\} is abelian
Hence of and total and so sgn(tt) sgn(tt) sgn(tt)

Parity of permutations

Tuesday, June 29, 2021

3:29 PM

have the same parity.

Ex. Suppose or is odd. Show that Tor is also

odd.

 $Pf. \quad Sgn(TOT) = Sgn(T) Sgn(O) Sgn(T)$

 $= sgn(7)^{2} sgn(0) \qquad (31, -13 \text{ abelian})$

 $= \operatorname{sgn}(\sigma) \qquad \qquad \left(\left(\pm 1\right)^2 - 1\right)$

Ex. For every o, TES, OTO-17-1EA,

 $\frac{\mathbb{P}^{2}}{\mathbb{P}^{2}} \quad \operatorname{Sgn}(\sigma \tau \sigma^{-1} \tau^{-1}) = \operatorname{Sgn}(\sigma) \operatorname{Sgn}(\tau) \operatorname{Sgn}(\sigma)^{-1} \operatorname{Sgn}(\tau)^{-1}$

 $(\S1, 1\S \text{ is abelian}) = \operatorname{Sgn}(O) \operatorname{Sgn}(O)^{-1} \operatorname{Sgn}(T) \operatorname{Sgn}(T)^{-1}$

= 1.