In the previous video we have seen the following properties of symmetric group:

Cycle decomposition. Every non-identity element of S_{n} can be written as a product disjoint cycles and this decomposition is unique up to reordering the cycles.

The linking relation Suppose a_{i} 's are pairwise distinct elements of $[1 \cdots n]$. Then

$$
\left(a_{1}, \ldots, a_{m}\right)\left(a_{m}, a_{m+1}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, a_{n}\right)
$$

- A 2 -cycle $\left(a_{1}, a_{2}\right)$ is called a transposition.

Lemma. Every cycle can be written as a product of transposition.

Pf. By induction on m, we prove that if a_{i} 's are pairwise distinct, then

$$
\left(a_{1}, \ldots, a_{m}\right)=\left(a_{1}, a_{2}\right)\left(a_{2}, a_{3}\right) \cdots\left(a_{m-1}, a_{m}\right)
$$

The base case of $m=2$ is clear. (the linking relation) Induction step. $\left(a_{1}, \ldots, a_{m}, a_{m+1}\right)=\left(a_{1}, \ldots, a_{m}\right)\left(a_{m}, a_{m+1}\right)$

By the induction hypothesis $\left(a_{1}, \ldots, a_{m}\right)=\left(a_{1}, a_{2}\right) \ldots\left(a_{m-1} a_{m}\right)$, and so $\left(a_{1}, a_{2}, \ldots, a_{m+1}\right)=\left(a_{1}, \ldots, a_{m}\right)\left(a_{m}, a_{m+1}\right)$

$$
=\left(a_{1}, a_{2}\right) \cdots\left(a_{m-1}, a_{m}\right)\left(a_{m}, a_{m+1}\right)
$$

This completes the proof.
Proposition. Every permutation can be written as a product of transpositions.
Pf. Suppose $\sigma \in S_{n}$. Then there are cycles $\sigma_{1}, \ldots, \sigma_{k}$ such that $\sigma=\sigma_{1} \cdots \sigma_{k}$ (by the cycle decomposition). By the previous lemma, each σ_{i} can be written as a product of transpositions. Hence σ can be written as a product of transpositions.
Notice that a permutation can be written as a product of transpositions in many ways. In order to give interesting examples, let's recall that for every $\sigma \in S_{n}$ $\sigma\left(a_{1}, \ldots, a_{m}\right) \sigma^{-1}=\left(\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{m}\right)\right)$. Let's also point out that $\left(a_{1}, a_{2}\right)\left(a_{1}, a_{2}\right)=$ id, and so if τ
is a transposition, then $\tau^{2}=i d$; hence $\tau^{-1}=\tau$.
Using these relations we obtain that

$$
(1,2)(1,3)(1,2)=(\tau(1), \tau(3))=(2,3) \text {. }
$$

This is an example of writing a permutation as a product of transpositions in different ways. An amazing fact, however, is that if

$$
\tau_{1} \tau_{2} \ldots \tau_{n}=\sigma_{1} \sigma_{2} \ldots \sigma_{m}
$$

and τ_{i} 's and $\sigma_{j}^{\prime} s$ are transpositions, then $m \equiv n$; this means either both m and n are odd or both of them are even. (We say m and n have the same parity.)
Theorem. Suppose $\tau_{1}, \ldots, \tau_{n}, \sigma_{1}, \ldots, \sigma_{m}$ are transpositions. If $\tau_{1} \ldots \tau_{n}=\sigma_{1} \cdots \sigma_{m}$, then $m \equiv n(\bmod 2)$.

Pf. Notice that since σ_{i}^{\prime} 's are transposition, $\sigma_{i}^{-1}=\sigma_{i}$. for every i. Hence $\left(\sigma_{1} \cdots \sigma_{m}\right)^{-1}=\sigma_{m}^{-1} \cdots \sigma_{1}^{-1}=\sigma_{m} \cdots \sigma_{1}$. Thus $\tau_{1} \cdots \tau_{n}=\sigma_{1} \cdots \sigma_{m}$ implies that $\tau_{1} \cdots \tau_{n} \sigma_{m} \cdots \sigma_{1}=i d$. Notice that $m^{2} \equiv n$ if and only if $m+n \equiv 0$. Hence

Parity of permutations
If we show that identity cannot be written as a product of an odd number of transpositions, then
$\underbrace{\tau_{1} \cdots \tau_{n} \sigma_{m} \cdots \sigma_{1}}_{m+n}=$ id. implies that $m+n$ is even. So $m^{2} \equiv n$.

Therefore it is enough to prove the following claim:
Claim. Suppose $\gamma_{1}, \ldots, \gamma_{k}$ are transpositions and $\gamma_{1} \cdots \gamma_{k}=i d$. Then $2 / k$.

Pf of Claim. We introduce a process with the following properties:

1. The number of appearance of the largest number in the cycle form of transpositions decreases.
2. The number of transpositions either stays the same or drops by 2 ; in either case the parity of the number of transpositions stays the same through out this process.

Notice that because of 1 at the end no transposition will be left. Hence the final number of transpositions is 0 .

Parity of permutations
Because of 2, the parity of the number of transpositions does not change. Hence the parity of the initial number k of transposition is the same as the parity of the final number of transpositions. Since at the end there are no transpositions, we conclude that k is even.

Suppose m is the largest number that appears in the (support of) transpositions γ_{i} 's.

We cant to move all the transpositions that have m in their support toward left of this multiplication.

- If two transpositions are dis joint, then they commute . \# of transpositions
$-(a, m)(a, m)=i d . \longrightarrow$ drop by 2
- \# of $\mathrm{m}^{2} \mathrm{~s}$ decreases

$$
\begin{aligned}
-(a, m)(b, m) & =(a, m)(m, b)=(a, m, b) \int_{0} \text {.\# of transpose. } \\
& =(m, b, a)=(m, b)(b, a) \cdot \# \text { of m's decrease. } \\
-(a, b)(a, m) & =(b, a)(a, m)=(b, a, m) \text {. \# of transp. } \\
& =(m, b, a)=(m, b)(b, a) \text {. transp. that }
\end{aligned}
$$

have m are more to left.

This process will terminate at some point. At the final state we cannot have more than one transpositions with m in their support. Because all these transpositions are on the left and if there are two such transpositions, they are either identical $(m, a),(m, a)$ and we use $(m, a)(m, a)=i d$., or they are $(m, a),(m, b)$, then we use

$$
\begin{aligned}
(m, a)(m, b) & =(a, m)(m, b)=(a, m, b) \\
& =(m, b, a)=(m, b)(b, a)
\end{aligned}
$$

We also notice that we cannot have only one transposition with m. Because in this case $(m, a) \quad \theta_{2} \theta_{3} \cdots \theta_{l}$ sends m to a. (Notice that $\theta_{i}(m)=m$, and so

This contradicts the assumption that this product is the identity. Hence at the end of this process m disappears from the involved transposition without changing the parity of the number of transpositions. This completes the pf.

Parity of permutations
Def. An element σ of S_{n} is called odd if it can be written as a product of odd number of transpositions, and it is called even if it can be written as a product of even number of transpositions. We let

$$
\operatorname{sgn}: S_{n} \rightarrow\{1,-1\}, \quad \operatorname{sgn}(\sigma)= \begin{cases}1 & \text { if } \sigma \text { is even } \\ -1 & \text { if } \sigma \text { is odd. }\end{cases}
$$ $\operatorname{sgn}(\sigma)$ is called the sign of σ.

Notice that $(\{1,-1\}, \cdot)$ is a group.
Theorem. syn: $S_{n} \rightarrow\{1,-1\}$ is a group homomorphism.
Pf. Suppose $\sigma, \tau \in S_{n}$ and $\sigma=\sigma_{1} \ldots \sigma_{n}, \tau=\tau_{1} \ldots \tau_{m}$ where $\sigma_{1}, \ldots, \sigma_{n}, \tau_{1}, \ldots, \tau_{m}$ are transpositions. Notice that $\operatorname{sgn}(\sigma)=(-1)^{n}$ (it is 1 if n is even, and it is 1 if n is odd.) and $\operatorname{sgn}(\tau)=(-1)^{m}$. We also observe that $\sigma \tau=\sigma_{1} \cdots \sigma_{n} \tau_{1} \cdots \tau_{m}$ can be written as a prod. of $m+n$ many transpositions. Hence $\operatorname{sgn}(\sigma \tau)=(-1)^{m+n}$. Because $(-1)^{m+n}=(-1)^{m}(-1)^{n}$, we obtain that $\operatorname{sgn}(\sigma \tau)=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)$. This completes the proof.

Parity of permutations
Tuesday, June 29, 2021 3:29 PM
Notice that $\operatorname{ker}(\operatorname{sgn})=\left\{\sigma \in S_{n} \mid \operatorname{sgn}(\sigma)=1\right\}$

$$
=\left\{\sigma \in S_{n} \mid \sigma \text { is even }\right\}
$$

Hence $\left\{\sigma \in S_{n} \mid \sigma\right.$ is even $\}$ is a subgroup of S_{n}.
This subgroup is called the alternating group, and it is denoted by A_{n}.

Ex. Suppose $\sigma=\left(a_{1}, \ldots, a_{m}\right)$ is an m-cycle. When is σ odd or even?

Solution. Using the linking relation we have

$$
\left(a_{1}, \ldots, a_{m}\right)=\left(a_{1}, a_{2}\right)\left(a_{2}, a_{3}\right) \cdots\left(a_{m-1}, a_{m}\right)
$$

Hence an m-cycle is a product of $m-1$ transpositions.
Therefore an m-cycle is even exactly when m is odd.
Ex. The parity of σ and its conjugates are the same.
Solution. For every $\tau \in S_{n}$,
(because

$$
\begin{aligned}
\operatorname{sgn}\left(\tau \sigma \tau^{-1}\right) & =\operatorname{sgn}(\tau) \operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)^{-1} \\
& =\operatorname{sgn}(\sigma) \quad\left\{1,-\frac{13}{}\right. \text { is abelian }
\end{aligned}
$$

Hence σ and $\tau \sigma \tau^{-1}$ and so $\operatorname{sgn}(\tau) \operatorname{sgn}(\tau)^{-1} \operatorname{sgn}(\sigma)$

Parity of permutations
have the same parity.
Ex. Suppose σ is odd. Show that $\tau \sigma \tau$ is also odd.

Pf. $\operatorname{sgn}(\tau \sigma \tau)=\operatorname{sgn}(\tau) \operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)$

$$
\begin{array}{ll}
=\operatorname{sgn}(\tau)^{2} \operatorname{sgn}(\sigma) & (\{1,-1\} \text { abelian }) \\
=\operatorname{sgn}(\sigma) & \left((\pm 1)^{2}=1 .\right)
\end{array}
$$

Ex. For every $\sigma, \tau \in S_{n}, \sigma \tau \sigma^{-1} \tau^{-1} \in A_{n}$.
Pf. $\operatorname{sgn}\left(\sigma \tau \sigma^{-1} \tau^{-1}\right)=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau) \operatorname{sgn}(\sigma)^{-1} \operatorname{sgn}(\tau)^{-1}$

$$
\begin{aligned}
(\{1,-1\} \text { is abelian }) & =\operatorname{sgn}(\sigma) \operatorname{sgn}(\sigma)^{-1} \operatorname{sgn}(\tau) \operatorname{sgn}(\tau)^{-1} \\
& =1 .
\end{aligned}
$$

