Groups and symmetries Tuesday, June 29, 2021 3:29 PM Meta-example. Suppose X is any object. By a symmetry of X we mean a bijective function f: X -> X which preserves properties of X. Let Sym(X) be the set of all symmetries of X. Notice that if f,g:X → X are two symmetries of X, then their composite fog should be also a symmetry of X. (at this point, think about this only intuitively.) Hence . defines an operation on Sym(X). Since (fog)oh=fogoh), • is associative. The identity function $id: X \rightarrow X$ clearly preserves properties of X, and so $id_{X} \in Sym(X)$. Notice that, for every $f \in Sym(X)$, $f \circ id_X = id_X \circ f = f$. Finally if $f: X \rightarrow X$ is a symmetry, then its inverse $f^{-1}: X \rightarrow X$ is also a symmetry. Notice that $f \cdot f = f \cdot f = i d_X$. Hence every element has an inverse. Therefore (Sym(X), o) is a group. Next we will discuss a couple of special cases of the above meta-example in details.

Symmetric group Tuesday, June 29, 2021 we start with the case where X is just a non-empty set with no extra property. Then every bijection $f: X \rightarrow X$ is considered a symmetry of X. This takes us to the definition of the symmetric group of a set X. <u>Def</u>. Suppose X is a non-empty set. Let $S_{\chi} := \Im f: \chi \rightarrow \chi \mid f \text{ is a bijection } \mathcal{F}.$ For a positive integer n, let Sn := Sn where $[1..n] := \frac{2}{2} \frac{1}{2}, ..., n\frac{2}{5}$ Proposition (S, , o) is a group where fog is the composition of f and g. ((Sx, o) is called the symmetric group of X.) Pf. We know that composite of two bijections is a bijection (if you do not remember this statement, try to prove it!) Hence o defines an operation on Sx. Notice that for every f,q,heSx and xeX, we have $((f \circ g) \circ h)(x) = (f \circ g)(h(x)) = f(g(h(x)))$ and $(f \circ (g \circ h))(x) = f((g \circ h)(x)) = f(g(h(x)))$. Therefore

Symmetric group Tuesday, June 29, 2021 3:29 PM (fog) o h = fo (goh). Therefore o is associative. The identity function $id_X: X \rightarrow X$ is a bijection, and so $id_X \in S_X$. For every $f \in S_X$, $id_X \circ f = f \circ id_X = f$. Therefore idy is the neutral element of Sx. . Since $f: X \rightarrow X$ is a bijection, it is an invertible function ($\alpha hy 2$). Hence there is $f^{-1}X \rightarrow X$ such that $f \circ f^{-1} = f^{-1} \circ f = id_{\chi} \cdot (1)$ (T) implies that f^{-1} is an invertible function. Hence f^{-1} is a bijection (Here we are using the following result from set theory, $f: X \rightarrow Y$ is a bijection if and only if it is invertible It is a good exercise to reprove this result on your own.) Therefore $f \in S_X$. By (1), we deduce that $f \in S_X$ is the inverse of f in (Sx, o). Def. A group (G,.) is called abelian if for every g, g eG, $\frac{q}{d_1} \cdot \frac{q}{d_2} = \frac{q}{d_2} \cdot \frac{q}{d_1} \cdot \frac{q}{d_2}$ Ex. $(\mathbb{Z},+), (\mathbb{Z}_n^{\times},\cdot), (\mathbb{C},+), \text{ and } (\mathbb{C}, \underbrace{\mathbb{Z}}_{0} \underbrace{\mathbb{S}}_{,\cdot}) \text{ are abelian.}$

Symmetric group Tuesday, June 29, 2021 3:29 PM <u>Ex. S_ is not abelian if nz3.</u> $\frac{PP}{P} \cdot Let \quad f_{1} \cdot \underline{\Gamma}(n) \rightarrow \underline{\Gamma}(n), \quad f_{1}(n) = 2, \quad f_{1}(2) = 1, \text{ and}$ $f_{i}(i) = i \quad \text{for} \quad 3 \leq i \leq n$ Let $f_2: [1..n] \rightarrow [1..n], f_2(1) = 3, f_1(3) = 1, and$ $f_2(i)=i$ for $i\in[1..n]\setminus\{1,3\}$. Then clearly f_1 and f_2 are bijections, and so f_1 , $f_2 \in S_n$. $(f_1, f_2)(1) = f_1(f_2(1)) = f_1(3) = 3$ and $(f_2,f_1)(1) = f_2(f_1(1)) = f_2(2) = 2$. Hence $f_{10}f_{2} \neq f_{20}f_{1}$. Therefore S is not abelian. Notice that elements of Sn are just permutations of 1,...,n. This means for f(1) we have n choices, after choosing fc1), for fc2) we have exactly n-1 choices ([1..n] \ {f(1)}), and so on. Therefore there are n(n-1)...(2)(1) possibilities for f. Hence $|S_n| = n!$. Next we consider symmetries of an n-cycle. An n-cycle is a graph with n vertices and n edges as we see in

Dihedral group Tuesday, June 29, 2021 3:29 PM the following figure. [2]_n [ī]_n we label the vertices by elements of Z to make our [0] arguments more concrete. [n-i] As we can see [i] is connected [h-2] to exactly two vertices [1-1] and [1+1]. A symmetry of a graph G with the set of vertices V is the set of bijections f: V-V such that for every v, weV, zv, wz is an edge if and only if ¿fcv), fcv) { is an edge. Following the meta-example one can check that the set of symmetries of a graph G with composition o is a group. Here we would like to understand the group of symmetries of an n-cycle First we notice that every vertex looks like other vertices. This means we can send to I to any other vertex using a

Dihedral group Tuesday, June 29, 2021 3:29 PM symmetry. Consider the rotation by [2] [1] one step; that means σ $\mathcal{O}: \mathbb{Z}_n \longrightarrow \mathbb{Z}_n, \quad \mathcal{O}(\mathcal{X}) := \mathcal{X} + [1]_{\mathcal{Y}}.$ [0]_n Notice that O is a bijection [n-i] as $x \mapsto x + [-1]$ is the inverse [h-2] of σ . We also notice that $\sigma(x) - \sigma(y) = x - y$, and x is connected to y exactly when $x - y \in \{1, 1, 1, 1\}$ Hence {x, y} is an edge if and only if 3 J(x), J(y) is an edge. Therefore O is a symmetry of this graph. Notice that $\sigma^{i}(x) = \sigma_{0} \dots \sigma(x)$ $= \left(\dots \left(\chi + [1]_{n} \right) + [1]_{n} + \dots \right) + [1]_{n}$ 2 times Hence $\sigma^{i}(x) = x + [i]$. In particular, $\sigma^{i}([o]) = [i]_{n}$ Next we want to see what we say about symmetries that do not move [0]. Suppose V is a symmetry and V([0])=[0]. Since [1] is connected to [0], Y([1]) is connected to

Dihedral group Tuesday, June 29, 2021 3:29 PM $N(toJ) = toJ_n$. This means [2]_n [1]_n Y([1]) is either [1] or [-1]. <u>Claim.</u> If X is a symmetry [o] <u> </u> of the n-cycle, Y([o])=[o], [n-1] and $Y([1]_n) = [1]_n$, then Y = id. [h-2]__ <u>PP</u>. We prove by strong induction on z that $Y([z:]) = [i:]_{}$ By hypothesis, we know that this is true for i=0 and 1 Suppose V([i])=[i] for o < i < k and k > 1. We want to show that $Y([k+1]_{n}) = [k+1]_{n}$. Notice that, since [k] is connected to [k+1], Y([k]) is connected to Y([k+1]). Because $Y([k]) = [k]_{n}$, Y([k+1])is either [k-1] or [k+1]. Since o<k-1<k, by the strong induction hypothesis, Y([k-1]) = [k-1]. Because Y is a bijection and $Y([k+1]) \neq Y([k-1])$ unless [k+1] = [k-1]. If [k+1] = [k-1], then $\gamma([k+1]_n) = \gamma([k-1]_n) = [k-1]_n = [k+1]_n \cdot |f [k+1]_n \neq [k-1]_n,$

Dihedral group Tuesday, June 29, 2021 3:29 PM then $\Upsilon([k+1]_n) \neq \Upsilon([k-1]_n),$ [2]_n [1]_n which means $\Upsilon([k+1]) \neq [k-1]$. Because Y ([k+1]) is either [o]_ [k-1] or [k+1], and it is not [n-i] [k-1], we conclude that [h-2]_ $Y([k+1]_n) = [k+1]_n$. The claim follows. $[2]_{n}$ To understand symmetries [I]_ which fix tot and send [1] [0]_n to [-1], we notice that the reflection, . [n-i]_ [h-2] $\tau: \mathbb{Z}_n \longrightarrow \mathbb{Z}_n, \ \tau(x) := -x$ is such a symmetry. Notice that, for every $x, y \in \mathbb{Z}_n$, T(x) - T(y) = y - x. Hence $x - y \in \{ [1]_{h}, [-1]_{h} \}$ if and only if $T(x) - T(y) \in \{[1], [-1], \}$. This means x is connected to y if and only if T(x) is connected to T(y). We also notice that $T^2 = id$, and so T is a bijection.

Dihedral group Tuesday, June 29, 2021 3:29 PM [2] Therefore T is a symmetry [i]_ of the n-cycle, T(IoI)=[o], [0] and $T([1]) = [-1]_{n}$. Claim. If Y is a symmetry [h-2] of the n-cycle, Y([o])=[o], and Y([1]) = [-1], then Y = TPf. Consider the symmetry T.Y. Notice that $\mathcal{T}_{\circ}\mathcal{Y}([\circ]_{n}) = \mathcal{T}(\mathcal{Y}([\circ]_{n})) = \mathcal{T}([\circ]_{n}) = [o]_{n}$ and $\mathcal{T}_{\circ}\mathcal{Y}([I]) = \mathcal{T}(\mathcal{Y}[I]) = \mathcal{T}([-I]) = [I]_{n}$ By the 1st claim, To V = id. Hence $\mathcal{T} = \mathcal{V} \cdot (\mathcal{T} \cdot \mathcal{T}) \Rightarrow \mathcal{T} = \mathcal{T} \cdot (\mathcal{T} \cdot \mathcal{T}) \cdot \mathcal{T} = \mathcal{T}$ $\implies \gamma = \tau$ Now we can describe all the symmetries of the n-cycle. Theorem. The group of symmetries of the n-cycle graph whose vertices are labelled by elements of Zn consists of \underline{z} id, σ , ..., σ^{n-1} , τ , σ , τ , ..., σ^{n-1} , τ where $\sigma : \mathbb{Z}_n \to \mathbb{Z}_n$

Dihedral group Tuesday, June 29, 2021 3:29 PM $\sigma(x) = x + [1]_n \quad (\text{rotation}) \quad \text{and} \quad \tau: \mathbb{Z}_n \to \mathbb{Z}_n, \quad \tau(x) = -x$ (reflection)Pf. Suppose X is a symmetry of this graph. Suppose $\gamma([o]_n) = [i]_n$. Then $\gamma([o]_n) = \sigma'([o]_n)$, and so O-10 X is a symmetry which stabilizes [0], ; that means 0-10 X ([0]) = [0]. We have showed that there are exactly two such symmetries: id. and T. Hence O-1. Y = id. or O-1. Y = Z. Multiplying both sides of these equations by o' from left, we obtain that either $Y = \sigma'$ or $Y = \sigma' \circ \tau$. This completes the proof. From the previous theorem, in particular we deduce that the n-cycle graph has 2n symmetries. The symmetric group can be viewed as the group of symmetries of the complete graph Kn with n vertices. The common idea for finding the number K₅ of symmetries of these graphs is the following:

An idea for symmetries of a graph Tuesday, June 29. 2021 3:29 PM 1. Start with a vertex v, and find out how many other vertices look like V. (A symmetry can send V, to those vertices) 2. Take one of the neighbors V of V, and find out after fixing v, how many of the neighbors of v, look like v2. 3. Continue the above process till you reach to a rigidity; this means if a symmetry fixes v, v2, ..., vk, then it is identity 4. Multiply all the numbers that you have found!