Multiplicative structure of integers mod n

Here we cant to investigate what elements of \mathbb{Z}_{n} have multiplicative inverse.

Def. We say $[a]_{n} \in \mathbb{Z}_{n}$ has a multiplicative inverse if $[a]_{n} \cdot\left[a^{\prime}\right]_{n}=[1]_{n}$ for some $\left[a^{\prime}\right]_{n} \in \mathbb{Z}_{n}$. We say $[a]_{n}$ is a unit of \mathbb{Z}_{n} if it has a multiplicative inverse. The set of all the units of \mathbb{Z}_{n} is denoted by \mathbb{Z}_{n}^{x}.

Theorem. Suppose $n \in \mathbb{Z}$ and $n \geq 2$. Then

$$
\mathbb{Z}_{n}^{x}=\left\{[a]_{n} \mid \operatorname{gcd}(a, n)=1\right\}
$$

Moreover $\left|\mathbb{Z}_{n}^{x}\right|=|\xi a \in \mathbb{Z}| 1 \leq a \leq n, \operatorname{gcd}(a, n)=1 \xi \mid$.
(The left hand side of the above equality is denoted by $\phi(n)$ and it is called Euler's phi function.)

PP. ($\subseteq)$ Suppose $[a]_{n} \in \mathbb{Z}_{n}^{x}$. Then $[a]_{n}\left[a^{\prime}\right]_{n}=[1]_{n}$ for some $a^{\prime} \in \mathbb{Z}$. Hence $\left[a a^{\prime}\right]_{n}=[1]_{n}$ which implies that $a a^{\prime} \stackrel{n}{\equiv} 1$. (Earlier we proved that $b^{n} \equiv b^{\prime}$ implies $\operatorname{gcd}(b, n)=\operatorname{gcd}\left(b^{\prime}, n\right)$.) Hence $\operatorname{gcd}\left(a a^{\prime}, n\right)=\operatorname{gcd}(1, n)=1$. Therefore $\operatorname{gcd}(a, n)=1$.
(2) Suppose $\operatorname{gcd}(a, n)=1$. Then $1=r a+s n$ for some

Multiplicative structure of integers mod n
Tuesday, June 29, 2021 3:29 PM
$r, s \in \mathbb{Z}$. Since $r a+s n=1$, we obtain that

$$
r a \stackrel{n}{\equiv} 1
$$

This implies that $[r a]_{n}=[1]_{n}$, and so $[r]_{n}[a]_{n}=[1]_{n}$.
Therefore $[a]_{n} \in \mathbb{Z}_{n}$.

- By the 1st part, we have

$$
\begin{equation*}
\left\{[a]_{n} \mid 1 \leq a \leq n, \quad \operatorname{gcd}(a, n)=1\right\} \subseteq \mathbb{Z}_{n}^{x} \tag{I}
\end{equation*}
$$

Next we show that the equality holds in (I). By the Dst part every element of \mathbb{Z}_{n}^{x} is of the form $[b]_{n}$ for some $b \in \mathbb{Z}$ such that $\operatorname{gcd}(b, n)$. Suppose r is the remainder of b divided by n. Then $b=n q+r$ for some integer q and $0 \leq r<n$. Hence $b \stackrel{n}{\equiv} r$. Therefore $\operatorname{gcd}(b, n)=\operatorname{gcd}(r, n)$, which implies that $\operatorname{gcd}(r, n)=1$. Because $n \geq 2$ and $\operatorname{gcd}(r, n)=1, \quad r \neq 0$. Altogether we $\left.\begin{array}{rl}\text { have: } \quad b \stackrel{n}{=} r \Rightarrow[b]_{n}=[r]_{n} \\ 1 \leq r<n \text { and } \operatorname{gcd}(r, n)=1\end{array}\right\} \Rightarrow[b]_{n} \in\left\{[a]_{n} \mid\right.$ This completes the proof.

Multiplicative structure of integers mod n
Ex. List all the elements of \mathbb{Z}_{6}^{x}
Solution. $\mathbb{Z}_{6}^{x}=\left\{[a]_{6} \mid 1 \leq a \leq 6, \operatorname{gcd}(a, \sigma)=1\right\}$

$$
=\left\{[1]_{6},\left[5 I_{6}\right\}\right.
$$

Ex. List all the elements of \mathbb{Z}_{8}^{x}.
Solution. $\mathbb{Z}_{8}^{x}=\left\{[a]_{8} \mid 1 \leq a \leq 8, \operatorname{gcd}(a, 8)=1\right\}$
Notice that all the divisors of 8 except 1 are even. So if a is odd, then $\operatorname{gcd}(a, 8)=1$. Conversely if $\operatorname{gcd}(a, 8)=1$, then a cannot be a multiple of 2 . Hence

$$
\operatorname{gcd}(a, 8)=1 \Leftrightarrow a \text { is odd. }
$$

Thus $\mathbb{Z}_{8}^{x}=\left\{\left[1 I_{8},\left[3 I_{8},[5]_{8},[7]_{8}\right\}\right.\right.$.
Proposition. Suppose p is prime. Then $\left.\left.\mathbb{Z}_{p}^{x}=\mathbb{Z}_{p} \backslash[0]\right]_{p}\right\}$.
Pf. By the previous theorem,

$$
\mathbb{Z}_{p}^{x}=\left\{[a]_{p} \mid 1 \leq a \leq p, \quad \operatorname{gcd}(a, p)=1\right\}
$$

Since p is prime, for every integer $1 \leq a<p$ we have $\operatorname{gcd}(a, p)=1$. Hence $\mathbb{Z}_{p}^{x}=\left\{[a]_{p} \mid 1 \leq a<p\right\}$. Since $\mathbb{Z}_{p}=\left\{[0]_{p},[1]_{p}, \ldots,[p-1]_{p}\right\}$, we obtain that $\mathbb{Z}_{p}^{x}=\mathbb{Z}_{p} \backslash\left\{[0]_{p}\right\}$.

Multiplicative structure of integers mod n

The converse of the previous proposition is essentially true:
Suppose $n \in \mathbb{Z}, n \geq 2$. If $\mathbb{Z}_{n}^{x}=\mathbb{Z}_{n} \backslash\{[0]\}$, then n is prime.
PP. If $\left.\mathbb{Z}_{n}^{x}=\mathbb{Z}_{n} \backslash\{[0]\}_{n}\right\}$, then $\phi(n)=n-1$. This means

$$
|\xi a \in \mathbb{Z}| 1 \leq a \leq n, \quad \operatorname{gcd}(a, n)=1\} \mid=n-1 .
$$

So n does not have any divisor in the interval $(1 \ldots n)$.
Since $n \geq 2$, we deduce that n is prime.
Ex. Suppose p is prime and $k \in \mathbb{Z}^{+}$. Then $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$.
Solution. We show that $\operatorname{gcd}\left(a, p^{k}\right)=1 \Longleftrightarrow p \nmid a$.
\Leftrightarrow We show the contrapositive. If p / a, then p is a common divisor of a and p^{k}; and so $\operatorname{gcd}\left(a, p^{k}\right) \neq 1$.
\Leftrightarrow We proceed by induction on k.
Base case. $k=1$.
Since $p \nmid a, \operatorname{gcd}(a, p) \neq p$. Since p has exactly two positive divisors 1 and p, we deduce that $\operatorname{gcd}(a, p)=1$. Induction step. $\operatorname{gcd}\left(a, p^{k}\right)=1 \Rightarrow \operatorname{gcd}\left(a, p^{k+1}\right)=1$.

By the base case, $\operatorname{gcd}(a, p)=1$. Then $\operatorname{gcd}(d, p)=1$ where

Multiplicative structure of integers mod n Monday, August 7, 2017 3:29 PM
$d=\operatorname{gcd}\left(a, p^{k+1}\right)$. Since $d \mid p^{k+1}$ and $\operatorname{gcd}(d, p)=1$, by Euclid's lemma, d / p^{k}. So d is a common divisor of a and p^{k}. Hence $d \leq \operatorname{gcd}\left(a, p^{k}\right)$. By the induction hypothesis $\operatorname{gcd}\left(a, p^{k}\right)=1$, and so $d=1$. (Notice that $d \geq 1$). This means $\operatorname{gcd}\left(a, p^{k+1}\right)=1$, and claim follows.

By the above claim,

$$
\begin{aligned}
\phi\left(p^{k}\right) & =\left|\left\{a \in \mathbb{Z} \mid 1 \leq a \leq p^{k}, \quad \operatorname{gcd}\left(a, p^{k}\right)=1\right\}\right| \\
& \left.=|\xi a \in \mathbb{Z}| 1 \leq a \leq p^{k}, \quad p x a\right\} \mid \\
& \left.=\left|\left[1 \ldots p^{k}\right] \vee \xi a \in \mathbb{Z}\right| 1 \leq a \leq p^{k}, p \mid a\right\} \mid \\
& =p^{k}-|\xi a \in \mathbb{Z}| 1 \leq a \leq p^{k}, p|a \xi| . \\
1 \leq a \leq p^{k}, p \mid a & \Leftrightarrow a=p a^{\prime} \text { and } 1 \leq p a^{\prime} \leq p^{k} \\
& \Leftrightarrow a=p a^{\prime} \text { and } 1 \leq a^{\prime} \leq p^{k-1}
\end{aligned}
$$

So there are p^{k-1} many $a^{\prime} s$ that satisfy $(*)$. Hence

$$
\phi\left(p^{k}\right)=p^{k}-p^{k-1}
$$

Next we show that \mathbb{Z}_{n}^{x} is closed under multiplication. This type of property plays an important role in group theory.

Multiplicative structure of integers mod n Tuesday, June 29, 2021 3:29 PM

Theorem. Suppose $n \in \mathbb{Z}$ and $n \geq 2$. Then (Operator) For every $[a]_{n},[b]_{n} \in \mathbb{Z}_{n}^{x},[a]_{n} \cdot[b]_{n} \in \mathbb{Z}_{n}^{x}$. (Associative) For every $[a]_{n},[b]_{n},[c]_{n} \in \mathbb{Z}_{n}^{x}$,

$$
\left([a]_{n} \cdot[b]_{n}\right) \cdot[c]_{n}=[a]_{n} \cdot\left([b]_{n} \cdot[c]_{n}\right)
$$

(Neutral element) For every $[a]_{n} \in \mathbb{Z}_{n}^{x},[a]_{n} \cdot[I]_{n}=[1]_{n} \cdot[a]_{n}=[a]_{n}$. (Inverse) For every $[a]_{n} \in \mathbb{Z}_{n}^{x}$, there is $\left[a^{\prime}\right]_{n} \in \mathbb{Z}_{n}^{x}$ such that

$$
[a]_{n} \cdot\left[a^{\prime}\right]_{n}=\left[a^{\prime}\right]_{n} \cdot[a]_{n}=[1]_{n} .
$$

Pf. We have already proved that multiplication in \mathbb{Z}_{n} is associative, and $\left[1 I_{n}\right.$ is a neutral element of multiplication. Next we show that \mathbb{Z}_{n}^{x} is closed under multiplication. Suppose $[a]_{n},[b]_{n} \in \mathbb{Z}_{n}^{x}$. Then there are $\left[a^{\prime}\right]_{n},\left[b^{\prime}\right]_{n} \in \mathbb{Z}_{n}$ such that $[a]_{n}\left[a^{\prime}\right]_{n}=[1]_{n}$ and $[b]_{n}\left[b^{\prime}\right]_{n}=[1]_{n}$.
Hence $\left([a]_{n}[b]_{n}\right)\left(\left[b^{\prime}\right]_{n}\left[a^{\prime}\right]_{n}\right)=[a]_{n}\left([b]_{n}\left[b^{\prime}\right]_{n}\right)\left[a^{\prime}\right]_{n}$

$$
\begin{aligned}
& =\left([a]_{n}[1]_{n}\right)\left[a^{\prime}\right]_{n} \\
& =[a]_{n}\left[a^{\prime}\right]_{n}=[1]_{n} .
\end{aligned}
$$

This means $[a]_{n}[b]_{n} \in \mathbb{Z}_{n}^{x}$. Finally let's discuss why

Multiplicative structure of integers mod n
every element of \mathbb{Z}_{n}^{x} has an inverse in \mathbb{Z}_{n}^{x}.
Since $[a]_{n} \in \mathbb{Z}_{n}^{x}$, there is $\left[a^{\prime}\right]_{n}$ in \mathbb{Z}_{n} such that

$$
\begin{equation*}
[a]_{n}\left[a^{\prime}\right]_{n}=[1]_{n} . \tag{I}
\end{equation*}
$$

(I) implies that $\left[a^{\prime}\right]_{n}[a]_{n}=[1]_{n}$, and so $[a]_{n} \in \mathbb{Z}_{n}^{x}$. This completes the proof.

Ex. Find a multiplicative inverse of $[20]_{47}$.
Solution. We have to find $x \in \mathbb{Z}$ such that

$$
\begin{equation*}
[20]_{47}[x]_{47}=[1]_{47} \tag{II}
\end{equation*}
$$

Notice that (II) holds if and only if $20 x \equiv 1$. (II)
(III) means $20 x-1=47 y$ for same $y \in \mathbb{Z}$.

Hence we need to find an integer solution for

$$
\begin{equation*}
-47 y+20 x=1 \tag{IV}
\end{equation*}
$$

Earlier we have discussed that using Euclid's algorithm we can find an integer solution for (IV). Let $a_{0}=47, a_{1}=20$.

$$
\begin{array}{ll}
47=20 \times 2+7, & q_{1}=2, \\
20=7 \times 2+6, & a_{2}=7 \\
2 & =2, \\
a_{3}=6
\end{array}
$$

Multiplicative structure of integers mod n
Tuesday, June 29, 2021 3:29 PM

$$
\begin{array}{ll}
7=6 \times 1+1, & q_{3}=1, \quad a_{4}=1 \\
6=1 \times 6+0, & q_{4}=6,
\end{array} a_{5}=0
$$

Then $\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ 1 & -q_{4}\end{array}\right]\left[\begin{array}{cc}0 & 1 \\ 1 & -q_{3}\end{array}\right]\left[\begin{array}{cc}0 & 1 \\ 1 & -q_{2}\end{array}\right]\left[\begin{array}{cc}0 & 1 \\ 1 & -q_{1}\end{array}\right]\left[\begin{array}{l}47 \\ 20\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
0 & 1 \\
1 & -6
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right] }= \\
& {\left[\begin{array}{cc}
0 & 1 \\
1 & -6
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
-2 & 5
\end{array}\right] }= \\
&\underbrace{0} \begin{array}{l}
1 \\
1
\end{array}-6]\left[\begin{array}{cc}
-2 & 5 \\
3 & -7
\end{array}\right]
\end{aligned}
$$

So $\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{cc}3 & -7 \\ * & *\end{array}\right]\left[\begin{array}{c}47 \\ 20\end{array}\right]$, which implies that

$$
1=(47)(3)+(20)(-7)
$$

Hence $[20]_{47}[-7]_{47}=[1]_{47}$. (If you prefer a representative in the interval $[0.36]$, notice that

$$
\left.[-7]_{47}=[40]_{7} .\right)
$$

