Greatest common divisor

To understand what elements of \mathbb{Z}_{n} have multiplicative inverse, we need to recall basic properties of greatest common divisor of integers. In particular, we recall Euclid's algorithm.

The greatest common divisor of two non-zero integers a and b is, as its name suggests,

$$
\max \xi d \in \mathbb{Z} \mid \text { dla, dIb\} , ~ }
$$

and it is denoted by $\operatorname{gcd}(a, b)$.
Notice that if a is a non-zero integer and $d l a$, then $d \leq|a|$. Hence $\operatorname{gcd}(a, b) \leq \min \{|a|,|b|\}$ if a, b are two non-zero integers.

Pictorially $\operatorname{god}(a, b)$ is the size of the largest square tile which can cover an $a \times b$ rectangle.

To find this tile, each time we cut the largest possible from
 one of the edges. We stop when we get a square!

Basic of divisibility

The above process is essentially Euclid's algorithm. We will make the process mane formal and prove why it works.

Lemma. Suppose $a, b, d \in \mathbb{Z}$. Then
. d la, $d|b \Rightarrow d| r a+s b$ for every $r, s \in \mathbb{Z}$

$$
\cdot d|b, d| a-b \Rightarrow d \mid a
$$

PP. $d / a \Rightarrow a=k d$ for some $k \in \mathbb{Z}_{\}} \Rightarrow$
$d \mid b \Rightarrow b=l d$ for some $l \in \mathbb{Z}]$

$$
\left.r a+s b=r k d+s l d=\frac{\sim_{\text {in }} \mathbb{Z}}{(r k+s l)} d \Rightarrow d \right\rvert\, r a+s b \text {. }
$$

$$
\text { . } d|b, d| a-b \Rightarrow d|(1)(b)+(1)(a-b) \Rightarrow d| a \text {. }
$$

The following is a corollary of the above lemma.

Steps of Euclid's algorithm

Corollary. Suppose a, b are two positive integers. Then

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a-b)
$$

Pf. We show that d is a common divisor of a and b if and only if d is a common divisor of b and $a-b$.

$$
d|a, d| b \Rightarrow d|(1)(a)+(-1)(b) \Rightarrow d| a-b .
$$

Hence $d \mid b$ and $d l a-b$.
If $d \mid b$ and $d \mid a-b$, then $d \mid a$ by the previous lemma.
Hence $\operatorname{gcd}(a, b)=\max \{d \in \mathbb{Z}|d| a, d \mid b\}$

$$
=\max \{d \in \mathbb{Z}|d| b, d \mid a-b\}=\operatorname{gcd}(b, a-b) .
$$

The above corollary justifies the steps in the pictorial argument:
 By cutting, we do not change the ged of the sides. So repeating this process we end up getting a square $d \square$, and $\operatorname{god}(d, d)=d$, which means sides of this square d is the god of the sides of the initial rectangle. Next we point out the connection with Euclid's algorithm.

Lemma. Suppose n is a non-zero integer. If $a \stackrel{n}{\equiv} a^{\prime}$, then

$$
\operatorname{gcd}(a, n)=\operatorname{gcd}\left(a^{\prime}, n\right)
$$

Pf. Since $a \stackrel{n}{\equiv} a^{\prime}, \quad a-a^{\prime}=n k$ for some $k \in \mathbb{Z}$.
$\cdot d \mid n$ and $d\left|a^{\prime} \Rightarrow d\right|(k) n+(1) a^{\prime} \Rightarrow d \mid a$.
$\cdot d \mid n$ and $d|a \Rightarrow d|(1) a+(-k) n \Rightarrow d \mid a^{\prime}$. (II)
By (I), (II), $\{d \in \mathbb{Z}|d| n, d l a\}=\left\{d \in \mathbb{Z}|d| n, d \mid a^{\prime}\right\}$. Hence $\operatorname{gcd}(n, a)=\operatorname{gcd}\left(n, a^{\prime}\right)$.
Euclid's algorithm is a fast way of finding the ged of two positive integers. Similar to the pictorial method, Euclid's algorithm gives us a process through which the gad stays the same, but we get smaller and smaller pairs.

Suppose $a \geq b$ are two positive integers. Let $a_{:}=a$, $a_{i}=b$. We divide a_{0} by a_{1} :
$a_{0}=a_{1} \cdot q_{1}+a_{2}$ Then $a_{0} \stackrel{a_{1}}{\equiv} a_{2}$, and so by the above lemma, $\operatorname{gcd}\left(a_{0}, a_{1}\right)=\operatorname{gcd}\left(a_{1}, a_{2}\right)$. Next we divide a_{1} by a_{2} if $a_{2} \neq 0$, and repeat this process till the remainder is 0 .

Euclid's algorithm
Tuesday, June 29, 2021 3:29 PM

$$
\begin{array}{cc}
a_{0}=a_{1} q_{1}+a_{2}, & \operatorname{gcd}\left(a_{0}, a_{1}\right)=\operatorname{gcd}\left(a_{1}, a_{2}\right), \\
a_{1}=a_{1}>a_{2} \\
\vdots+a_{2}, & \operatorname{gcd}\left(a_{1}, a_{2}\right)=\operatorname{gcd}\left(a_{2}, a_{3}\right), \\
\vdots & a_{2}>a_{3} \\
\vdots & \vdots \\
a_{n-1}=a_{n} q_{n}+0, & \operatorname{gcd}\left(a_{n-1}, a_{n}\right)=a_{n}, \\
& a_{n}>0
\end{array}
$$

Hence $a_{0} \geq a_{1}>a_{2}>\cdots>a_{n}>0$ and $a_{n}=\operatorname{god}\left(a_{0}, a_{1}\right)=\operatorname{gcd}(a, b)$.
Notice that, for every $0 \leq i<n$,

$$
\left[\begin{array}{cc}
0 & 1 \\
1 & -q_{i}
\end{array}\right]\left[\begin{array}{c}
a_{i-1} \\
a_{i}
\end{array}\right]=\left[\begin{array}{l}
(0)\left(a_{i-1}\right)+(1)\left(a_{i}\right) \\
(1)\left(a_{i-1}\right)+\left(-q_{i}\right)\left(a_{i}\right)
\end{array}\right]=\left[\begin{array}{c}
a_{i} \\
a_{i-1}-a_{i} q_{i}
\end{array}\right]=\left[\begin{array}{l}
a_{i} \\
a_{i+1}
\end{array}\right] .
$$

Hence $\left[\begin{array}{l}a_{n} \\ 0\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ 1 & -q_{n}\end{array}\right]\left[\begin{array}{cc}0 & 1 \\ 1 & -q_{n-1}\end{array}\right] \cdots\left[\begin{array}{cc}0 & 1 \\ 1 & -q_{1}\end{array}\right]\left[\begin{array}{l}a_{0} \\ a_{1}\end{array}\right]$.
Therefore $a_{n}=r a_{0}+s a_{1}$ for some integers $r_{1} s$. (*)
The following theorem follows.
Theorem. For every non-zero integers a and b, there are integers r and s such that $\operatorname{gcd}(a, b)=r a+s b$.

Pf. We notice that $\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|)$. Now claim follows from (*).
Remark. (*) gives us an algorithm to find an integer solution for $\operatorname{gcd}(a, b)=a x+b y$.

Euclid's algorithm: an example

Ex. Find $\operatorname{gcd}(197,79)$ and curite it as an integer linear combination of 197 and 79 .

Solution. We follow Euclid's algorithm. Let $a_{0}=179, a_{1}=79$.

$$
\begin{array}{lll}
197=79 \times 2+39, & q_{1}=2, & a_{2}=39 \\
79=39 \times 2+1, & q_{2}=2, & a_{3}=1 \\
39=(1 \times 39+0, & q_{3}=39, & a_{4}=0
\end{array}
$$

So $\operatorname{gcd}(197,79)=1$ and

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
1 & -q_{3}
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & -q_{2}
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & -q_{1}
\end{array}\right]\left[\begin{array}{c}
197 \\
79
\end{array}\right] } \\
& {\left[\begin{array}{cc}
0 & 1 \\
1 & -39
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right] }=\left[\begin{array}{cc}
0 & 1 \\
1 & -39
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
-2 & 5
\end{array}\right] \\
&=\left[\begin{array}{cc}
-2 & 5 \\
* & *
\end{array}\right]
\end{aligned}
$$

This means $\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{cc}-2 & 5 \\ * & *\end{array}\right]\left[\begin{array}{c}197 \\ 79\end{array}\right]$. Comparing the 1st components, we obtain that

$$
1=197 \times(-2)+79 \times(5)
$$

Basic properties of ged
Here we review basic properties of gad of two integers.
Theorem. Suppose a, b are two non-zero integers. Then if $\operatorname{gcd}(a, b)=d$, then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
PP. Since $\operatorname{gcd}(a, b)=d, d / a$ and d / b and
$d=r a+b s$ for some $r, s \in \mathbb{Z}$.
Hence $\frac{a}{d}, \frac{b}{d} \in \mathbb{Z}$ and $1=r\left(\frac{a}{d}\right)+s\left(\frac{b}{d}\right)$.
Let $d^{\prime}=\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)$. Then $d^{\prime}\left|\frac{a}{d}, d^{\prime}\right| \frac{b}{d}$, and so $d^{\prime} \left\lvert\, r\left(\frac{a}{d}\right)+s\left(\frac{b}{d}\right)\right.$ (II). Therefore by (II) and (II), $d^{\prime} \mid 1$.
Thus $d^{\prime}=1$, which means $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
Theorem. Suppose a, b are two non-zero integers. If $d:=\operatorname{gcd}(a, b)$ and d^{\prime} is a common divisor of a and b, then $d^{\prime} \mid d$.

Pf. Since $d=\operatorname{gcd}(a, b), d=r a+s b$ for some $r, s \in \mathbb{Z}$. Because $d^{\prime} \mid a$ and $d^{\prime}\left|b, \quad d^{\prime}\right| r a+s b$. Hence $d^{\prime} \mid d$.

Theorem. Suppose a, b, c are three non-zero integers. Then $\operatorname{gcd}(a c, b c)=|c| \operatorname{gcd}(a, b)$.

Pf. Suppose $d:=\operatorname{gcd}(a, b)$. Then d / a and $d l b$, and so

Basic properties of gad
Tuesday, June 29, 2021 3:29 PM
$d|c|$ divides $a c$ and $d|c|$ divides bc. Hence

$$
\begin{equation*}
d|c| \leq \operatorname{gcd}(a c, b c) \tag{I}
\end{equation*}
$$

On the other hand, $d=\operatorname{gcd}(a, b)$ implies that $d=r a+s b$ for same $r, s \in \mathbb{Z}$. Hence

$$
\begin{equation*}
d|c|=r a|c|+s b|c|= \pm(r(a c)+s(a c)) \tag{II}
\end{equation*}
$$

Notice that $\operatorname{gcd}(a c, b c)$ divides every integer linear combination of ac and bc. Hence by (II),

$$
\begin{equation*}
\operatorname{gcd}(a c, b c)|d| c \mid \tag{III}
\end{equation*}
$$

By (II) and (III), $\operatorname{gcd}(a c, b c)=d|c|$, which means

$$
\operatorname{gcd}(a c, b c)=|c| \operatorname{gcd}(a, b)
$$

Euclid's lemma For $a, b, c \in \mathbb{Z} \backslash\{0\}$,

$$
\left.\begin{array}{c}
\operatorname{gcd}(a, b)=1 \\
a \mid b c
\end{array}\right\} \Rightarrow a \mid c
$$

(If a and b do not have any non-trivial common factors and a divides $b c$, then a / c. This lemma plays an important role in proving the uniqueness of factorization of integers into prime numbers.)

Euclid's lemma
Tuesday, June 29, 2021
Pf. Since $\operatorname{gcd}(a, b)=1,1=r a+b s$ for some $r, s \in \mathbb{Z}$.
Multiplying both sides of (I) by c, we obtain that

$$
\begin{equation*}
c=r c(a)+s(b c) \tag{II}
\end{equation*}
$$

Since $a \mid a$ and $a \mid b c$, a divides every integer linear combination of a and $b c$. Therefore by (II), $a \mid c$.

An important corollary of Euclid's lemma is about prime numbers. Let's recall that an integer p is called prime if $p>1$ and p has exactly two positive divisors 1 and p. This means if p is prime, $d \in \mathbb{\mathbb { Z }}^{+}$, and d / p, then $d=1$ or p. Here is an important corollary of Euclid's lemma.

Euclid's lemma: prime number case Suppose p is prime and a, b are two non-zero integers. Then
plab implies that either ola or plo.
Pf. If $p \nmid a$, then $\operatorname{gcd}(p, a) \neq p$. Hence $\operatorname{gcd}(p, a)=1$ as p has exactly two positive divisors 1 and p.

Since $\operatorname{gcd}(p, a)=1$ and $p \mid a b$, by Euclid's lemma, $p \mid b$.

