QUIZ 3, VERSION B, MATH103A, SUMMER 2021

1. Determine if the following statements are true or false. Briefly justify your answer.
(a) $\left(2\right.$ points) In $\mathbb{Z}_{9}^{\times}, o\left([2]_{9}\right)=6$.
(b) (2 points) $(\mathbb{R} \backslash\{0\}, \cdot) \simeq(\mathbb{R},+)$ where $\mathbb{R} \backslash\{0\}$ is the set of non-zero real numbers.
(c) (2 points) There is no element of S_{9} that has order 20.
(d) (2 points) In S_{3}, there are transpositions τ_{1} and τ_{2} such that $o\left(\tau_{1} \tau_{2}\right)=3$.
2. Suppose $G=\langle g\rangle$ is a group of order 70 .
(a) (2 points) Notice that $G \times G$ is a group under the following multiplication:

$$
\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right)=\left(x_{1} \cdot y_{1}, x_{2} \cdot y_{2}\right)
$$

Show that for every $(x, y) \in G \times G$, we have $(x, y)^{70}=\left(e_{G}, e_{G}\right)$.
(b) (3 points) Prove that $G \times G$ is not a cyclic group.
(c) (2 points) Suppose $o\left(g^{k}\right)=14$. Find $\operatorname{gcd}(k, 70)$.
(d) (3 points) How many elements of G have order 14 ?
(e) (2 points) How many subgroups does G have?
3. Suppose $\sigma=\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 9 & 2 & 1 & 10 & 4 & 8 & 3 & 5 & 7 & 6\end{array}\right)$.
(a) (3 points) Find a cycle decomposition of σ.
(b) (2 points) Find $|\langle\sigma\rangle|$.
(c) (3 points) Find a cycle decomposition of σ^{59}.
(d) (2 points) Is σ odd or even? Justify your answer.

