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(1) (a) True. Since [2]9 generates the cyclic subgroup

〈[2]9〉 = {[2]9, [4]9, [8]9, [7]9[5]9, [1]9}

of order 6. We conclude that o([2]9) = | 〈[2]9〉 | = 6.
(b) False. Suppose f : R \ {0} → R is an isomorphism. Then f(1) = 0.

Let f(−1) = k. As f is a group homomorphism,

0 = f(1) = f((−1) · (−1)) = f(−1) + f(−1) = 2k.

Hence k = 0 and f is not injective. Hence such an isomorphism does
not exist.

(c) False. Consider the elements σ1 = (1, 2, 3, 4) and σ2 = (5, 6, 7, 8, 9) in
S9. Both σ1 and σ2 are cycles with orders 4 and 5 respectively. Hence

o(σ1σ2) = lcm(4, 5) = 20.

So σ1σ2 is an element of order 20 in S9.
(d) True. Let τ1 = (1, 2), τ2 = (2, 3). By the linking lemma, τ1τ2 =

(1, 2)(2, 3) = (1, 2, 3) and o(τ1τ2) = 3.
(2) (a) Since G is cyclic of order 70, x70 = y70 = eG. Hence in G×G,

(x, y)70 = (x70, y70) = (eG, eG).

(b) Suppose G × G is cyclic and has generator (x, y). Then o(x, y) =
|G×G|. From part (a), o(x, y)||G| hence o(x, y) ≤ |G|. We now note,

o(x, y) ≤ |G| < |G×G|

a contradiction. Hence no such generator exists and G × G is not
cyclic.

(c) Using the formula

o(gk) =
o(g)

gcd(k, o(g))

from the lecture, we obtain

14 = o(gk) =
o(g)

gcd(o(g), k)
=

70

gcd(k, 70)
.

Hence gcd(k, 70) = 5.
(d) Since G is cyclic any element of G is of the form gk for some k satisfying

0 ≤ k < 70. By the previous part o(gk) = 14 implies gcd(k, 70) = 5.
Since

gcd(k, 70) = 5 ⇐⇒ gcd(l, 14) = 1

where 5l = k and 1 ≤ 5l ≤ 70. There are only φ(14) = 6 possible
values of l, hence there are 6 elements of order 14.
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(e) We recall from lecture that any finite cyclic group has one subgroup
for each divisor of the order of the group. Since the divisors of 70 are
{1, 2, 5, 7, 10, 14, 35, 70}, G has 8 subgroups.

(3) (a) By repeatedly applying σ, we get the cycles 1 → 9 → 7 → 3 → 1,
2 → 2, 4 → 10 → 6 → 8 → 5 → 4. Hence the cyclic decomposition is
given by

σ = (1, 9, 7, 3)(2)(4, 10, 6, 8, 5) = (1, 9, 7, 3)(4, 10, 6, 8, 5).

(b) Note that the disjoint cycles that appear in the cyclic decomposition
have orders 4 and 5, hence

|〈σ〉| = lcm(4, 5) = 20.

(c) Let σ1 = (1, 9, 7, 3) and σ2 = (4, 10, 6, 8, 5). Since σ1 and σ2 are
disjoint cycles, they commute. As o(σ1) = 4 and o(σ2) = 5,

σ59 = σ59
1 σ

59
2 = σ−1

1 σ−1
2 = (3, 7, 9, 1)(5, 8, 6, 10, 4)

(d) Since σ1 is an odd cycle and σ2 is an even cycle,

sgn(σ) = sgn(σ1)sgn(σ2) = (−1) · (1) = −1.

So σ is an odd cycle.


