QUIZ 3 VERSION B SOLUTIONS
 MATH 103A, SUMMER 2021

(1) (a) True. Since $[2]_{9}$ generates the cyclic subgroup

$$
\left\langle[2]_{9}\right\rangle=\left\{[2]_{9},[4]_{9},[8]_{9},[7]_{9}[5]_{9},[1]_{9}\right\}
$$

of order 6 . We conclude that $o\left([2]_{9}\right)=\left|\left\langle[2]_{9}\right\rangle\right|=6$.
(b) False. Suppose $f: \mathbf{R} \backslash\{0\} \rightarrow \mathbf{R}$ is an isomorphism. Then $f(1)=0$. Let $f(-1)=k$. As f is a group homomorphism,

$$
0=f(1)=f((-1) \cdot(-1))=f(-1)+f(-1)=2 k .
$$

Hence $k=0$ and f is not injective. Hence such an isomorphism does not exist.
(c) False. Consider the elements $\sigma_{1}=(1,2,3,4)$ and $\sigma_{2}=(5,6,7,8,9)$ in S_{9}. Both σ_{1} and σ_{2} are cycles with orders 4 and 5 respectively. Hence

$$
o\left(\sigma_{1} \sigma_{2}\right)=\operatorname{lcm}(4,5)=20
$$

So $\sigma_{1} \sigma_{2}$ is an element of order 20 in S_{9}.
(d) True. Let $\tau_{1}=(1,2), \tau_{2}=(2,3)$. By the linking lemma, $\tau_{1} \tau_{2}=$ $(1,2)(2,3)=(1,2,3)$ and $o\left(\tau_{1} \tau_{2}\right)=3$.
(2) (a) Since G is cyclic of order $70, x^{70}=y^{70}=e_{G}$. Hence in $G \times G$,

$$
(x, y)^{70}=\left(x^{70}, y^{70}\right)=\left(e_{G}, e_{G}\right)
$$

(b) Suppose $G \times G$ is cyclic and has generator (x, y). Then $o(x, y)=$ $|G \times G|$. From part (a), $o(x, y)||G|$ hence $o(x, y) \leq|G|$. We now note,

$$
o(x, y) \leq|G|<|G \times G|
$$

a contradiction. Hence no such generator exists and $G \times G$ is not cyclic.
(c) Using the formula

$$
o\left(g^{k}\right)=\frac{o(g)}{\operatorname{gcd}(k, o(g))}
$$

from the lecture, we obtain

$$
14=o\left(g^{k}\right)=\frac{o(g)}{\operatorname{gcd}(o(g), k)}=\frac{70}{\operatorname{gcd}(k, 70)}
$$

Hence $\operatorname{gcd}(k, 70)=5$.
(d) Since G is cyclic any element of G is of the form g^{k} for some k satisfying $0 \leq k<70$. By the previous part $o\left(g^{k}\right)=14$ implies $\operatorname{gcd}(k, 70)=5$. Since

$$
\operatorname{gcd}(k, 70)=5 \Longleftrightarrow \operatorname{gcd}(l, 14)=1
$$

where $5 l=k$ and $1 \leq 5 l \leq 70$. There are only $\phi(14)=6$ possible values of l, hence there are 6 elements of order 14 .
(e) We recall from lecture that any finite cyclic group has one subgroup for each divisor of the order of the group. Since the divisors of 70 are $\{1,2,5,7,10,14,35,70\}, G$ has 8 subgroups.
(3) (a) By repeatedly applying σ, we get the cycles $1 \rightarrow 9 \rightarrow 7 \rightarrow 3 \rightarrow 1$, $2 \rightarrow 2,4 \rightarrow 10 \rightarrow 6 \rightarrow 8 \rightarrow 5 \rightarrow 4$. Hence the cyclic decomposition is given by
$\sigma=(1,9,7,3)(2)(4,10,6,8,5)=(1,9,7,3)(4,10,6,8,5)$.
(b) Note that the disjoint cycles that appear in the cyclic decomposition have orders 4 and 5 , hence

$$
|\langle\sigma\rangle|=\operatorname{lcm}(4,5)=20
$$

(c) Let $\sigma_{1}=(1,9,7,3)$ and $\sigma_{2}=(4,10,6,8,5)$. Since σ_{1} and σ_{2} are disjoint cycles, they commute. As $o\left(\sigma_{1}\right)=4$ and $o\left(\sigma_{2}\right)=5$,

$$
\sigma^{59}=\sigma_{1}^{59} \sigma_{2}^{59}=\sigma_{1}^{-1} \sigma_{2}^{-1}=(3,7,9,1)(5,8,6,10,4)
$$

(d) Since σ_{1} is an odd cycle and σ_{2} is an even cycle,

$$
\operatorname{sgn}(\sigma)=\operatorname{sgn}\left(\sigma_{1}\right) \operatorname{sgn}\left(\sigma_{2}\right)=(-1) \cdot(1)=-1
$$

So σ is an odd cycle.

