QUIZ 3, VERSION A - SOLUTIONS

Problem 1.

Part a. This statement is true. Notice that $[2]_{5}^{4}=[16]_{5}=[1]_{5}$ so $o\left([2]_{5}\right) \mid 4$. Since $[2]_{5} \neq[1]_{5}$ and $[2]_{5}^{2}=[4]_{5} \neq[1]_{5}$ we see that $o\left([2]_{5}\right)=4$.

Part b. This statement is true. Consider the natural log map $\ln :\left(\mathbb{R}^{+}, \cdot\right) \rightarrow(\mathbb{R},+)$. Notice that for any two positive $x, y \in \mathbb{R}$, we have that

$$
\ln (x \cdot y)=\ln (x)+\ln (y)
$$

so \ln is a group homomorphism. Furthermore, we know that \ln is bijective and so it is a group isomorphism.

Part c. This statement is false. Consider $\sigma=\left(\begin{array}{llll}1 & 2 & 3\end{array}\right)\left(\begin{array}{lll}4 & 5 & 6\end{array}\right) \in S_{7}$. Since the two cycles in the above decomposition are disjoint, we have

$$
o(\sigma)=\operatorname{lcm}\left(o((123)), o\left(\left(\begin{array}{ll}
4 & 5
\end{array}\right]\right)\right)=\operatorname{lcm}(3,4)=12>7 .
$$

Part d. This statement is false. Consider $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $\tau=\left(\begin{array}{ll}2 & 3\end{array}\right)$, both in S_{3}. Clearly $\sigma^{2}=\tau^{2}=$ id. However, $\sigma \tau=\left(\begin{array}{ll}1 & 2\end{array}\right)$, which has order 3 .

Problem 2.

Part a. Suppose $(x, y) \in G \times G$. Then

$$
(x, y)^{30}=\left(x^{30}, y^{30}\right)=\left(e_{G}, e_{G}\right)
$$

since for every $g \in G, g^{30}=e_{G}$ as it is a cyclic group of order 30 .
Part b. Suppose $(x, y) \in G$. By the previous part, $o(x, y) \mid 30$. In particular, $o(x, y) \leq 30$. Therefore

$$
|\langle(x, y)\rangle|=o(x, y) \leq 30<60=|G \times G| .
$$

Therefore no element can generate $G \times G$, and so the direct product is not cyclic.
Part c. From lecture, we have that

$$
o\left(g^{k}\right)=\frac{o(g)}{\operatorname{gcd}(o(g), k)}
$$

Therefore

$$
\operatorname{gcd}(o(g), k)=\frac{o(g)}{o\left(g^{k}\right)}=\frac{30}{15}=2
$$

Part d. By the previous part, the elements of G with order 15 are those $g^{k} \in G$ where $0 \leq k<30$ and $\operatorname{gcd}(k, 30)=2$. Namely, k needs to lie in $\{2,4,8,14,16,22,26,28\}$. Therefore there are 8 elements of order 15 in G.
(Alternatively, $\operatorname{gcd}(k, 30)=2$ implies that $k=2 l, \operatorname{gcd}(l, 15)=1$, and $1 \leq 2 l \leq 30$. Hence the number such l 's is equal to $\phi(15)=\phi(3) \phi(5)=2 \times 4=8$.)

Part e. From lecture, we know that there is a bijection between subgroups of a finite cyclic group and positive divisors of its order. Hence the number of subgroups of G is equal to the number of positive divisors of 30 . The set of positive divisors of 30 is $\{1,2,3,5,6,10,15,30\}$. Therefore G has 8 subgroups.

Problem 3.

Part a. The cycle decomposition of σ is

$$
\sigma=(1105)(29637)(48) .
$$

Part b. From lecture, we know that the order of a permutation σ is equal to the least common multiple of the lengths of the cycles in its cycle decomposition. Hence

$$
o(\sigma)=\operatorname{lcm}(3,5,2)=30 .
$$

Therefore $|\langle\sigma\rangle|=o(\sigma)=30$.
Part c. Since the order of σ is 30 , notice that

$$
\sigma^{59} \sigma=\sigma^{60}=\mathrm{id}
$$

Therefore $\sigma^{59}=\sigma^{-1}$. Thus

$$
\sigma^{59}=\left(\begin{array}{ll}
5 & 10
\end{array}\right)(73692)(84)
$$

Notice that to invert σ, you just reverse all of the cycles in the disjoint cycle decomposition.
Part d. From lecture, we know that we can write every n-cycle as the product of $n-1$ transpositions. Therefore, σ can be written as a product of

$$
(3-1)+(5-1)+(2-1)=7
$$

transpositions. Hence σ is odd.
(Alternatively, sign of an m-cycle is $(-1)^{m-1}$, and so

$$
\operatorname{sgn}(\sigma)=\operatorname{sgn}(1105) \operatorname{sgn}(29637) \operatorname{sgn}(48)=(1)(1)(-1)=-1 .
$$

This means that σ is odd.)

