QUIZ 2, VERSION B, MATH103A, SUMMER 2021

- 1. Determine if the following statements are true or false. Briefly justify your answer.
 - (a) (2 point) $(\mathbb{Z}^{\geq 0}, +)$ is a group, where $\mathbb{Z}^{\geq 0}$ is the set of non-negative integers.
 - (b) (2 point) $\mathbb{R} \setminus \{0\}$ is a subgroup of $(\mathbb{R}, +)$.
 - (c) (2 points) $(\mathbb{Z}_{21} \setminus \{[0]_{21}\}, \cdot)$ is a group.
 - (d) (2 point) $[5]_{13}$ is in the kernel of f where $f: \mathbb{Z}_{13}^{\times} \to \mathbb{Z}_{13}^{\times}, f([a]_{13}) := [a]_{13}^{4}$.
 - (e) (2 point) $|Z(S_n)| = 1$ if $n \ge 3$.
- 2. (5 points) Explain why $[8]_{19}$ is in \mathbb{Z}_{19}^{\times} and find an integer x such that $[8]_{19}^{-1} = [x]_{19}$.
- 3. (5 points) Suppose G is a group and $f: G \to G, f(g) = g^{-1}$ is a group homomorphism. Prove that G is abelian.
- 4. Suppose n is a positive integer and $n \geq 3$. Let \mathcal{C}_n be the cycle with n vertices which are labeled by elements of \mathbb{Z}_n and $[x]_n$ is connected to $[y]_n$ if and only if $[y]_n [x]_n = \pm [1]_n$. Recall that the group of symmetries of \mathcal{C}_n is the dihedral group D_{2n} with 2n elements and

(1)
$$D_{2n} = \{ id, \sigma, \dots, \sigma^{n-1}, \tau, \tau \circ \sigma, \dots, \tau \circ \sigma^{n-1} \}$$

where $\sigma: \mathbb{Z}_n \to \mathbb{Z}_n$, $\sigma(x) := x + 1$ and $\tau: \mathbb{Z}_n \to \mathbb{Z}_n$, $\tau(x) := -x$. Let's recall that $\sigma^n = \mathrm{id}$, $\tau^2 = \mathrm{id}$, and $\tau \circ \sigma \circ \tau^{-1} = \sigma^{-1}$.

- (a) (4 points) Find out which element of D_{14} is $\tau \circ \sigma^2 \circ \tau \circ \sigma$ (an element of the form given in (1)).
- (b) (4 points) Show that σ^4 is not in the centralizer group $C_{D_{14}}(\tau \circ \sigma)$.
- (c) (2 points) Suppose $\gamma \in D_{14}$, $\gamma([0]_{14}) = [6]_{14}$, and $\gamma([1]_{14}) = [5]_{14}$. Find out which element of D_{10} is γ (an element of the form given in (1)).