## QUIZ 2 VERSION B SOLUTIONS <br> MATH 103A, SUMMER 2021

(1) (a) False. The set $\mathbf{Z}^{\geq 0}$ is not a group under addition as the additive inverse of any positive integer is negative. For example, suppose $1 \in \mathbf{Z}^{\geq 0}$ has an additive inverse $k \in \mathbf{Z} \geq 0$ and $1+k=0$. We arrive at a contradiction by noting that $1>0$ implies $0=1+k>0$.
(b) False. The set $\mathbf{R} \backslash\{0\}$ does not contain 0 , the neutral element for addition.
(c) False. Since 21 does not divide $3,[3]_{21} \neq[0]_{21}$. However $\operatorname{gcd}(3,21)=$ $3 \neq 1$ so the element $[3]_{21}$ does not have a multiplicative inverse in the set $\mathbf{Z}_{21} \backslash\left\{[0]_{21}\right\}$.
(d) True. A short computation shows

$$
f\left([5]_{13}\right)=[5]_{13}^{4}=[25]_{13}^{2}=[-1]_{13}^{2}=[1]_{13} .
$$

Since $[1]_{13}$ is the neutral element in $\mathbf{Z}_{13}^{+}$and $f\left([5]_{13}\right)=[1]_{13}$, we obtain that $[5]_{13} \in \operatorname{ker}(f)$.
(e) True. If $\left|Z\left(S_{n}\right)\right|>1$ for some $n \geq 3$, then we may pick $\sigma \in Z\left(S_{n}\right)$ such that $\sigma$ is not the trivial element. Since $\sigma$ non-trivial, there is some $1 \leq i \leq n$ such that $\sigma(i)=j \neq i$. Since $n \geq 3$, pick $1 \leq k \leq n$ such that $j \neq k$ and $k \neq i$. Let $\tau \in S_{n}$ be the transposition that swaps $j, k$ and keeps everything else fixed. Then

$$
\sigma(\tau(i))=\sigma(i)=j, \quad \tau(\sigma(i))=\tau(j)=k \neq j
$$

Hence $\sigma \tau \neq \tau \sigma$ so $\sigma \notin Z\left(S_{n}\right)$.
(2) The multiplicative group $\mathbf{Z}_{19}^{\times}$contains all equivalence classes $[k]_{19}$ such that $\operatorname{gcd}(k, 19)=1$. Since $\operatorname{gcd}(8,19)=1,[8]_{19} \in \mathbf{Z}_{19}^{\times}$. To find $x$ such that $[8]_{19}^{-1}=[x]_{19}$, it suffices to solve

$$
8 x \equiv 1 \quad \bmod 19
$$

Using the division algorithm,

$$
\begin{aligned}
19 & =2 \cdot 8+3 \\
8 & =2 \cdot 3+2 \\
3 & =1 \cdot 2+1 \\
2 & =2 \cdot 1+0
\end{aligned}
$$

As a product of $2 \times 2$ matrices, we may write this as

$$
\binom{1}{0}=\left(\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right)\binom{19}{8} .
$$

Multiplying the matrices,

$$
\binom{1}{0}=\left(\begin{array}{cc}
3 & -7 \\
* & *
\end{array}\right)\binom{19}{8}
$$

Hence $3 \cdot 19-7 \cdot 8=1$ and we conclude

$$
[x]_{19}=[8]_{19}^{-1}=[-7]_{19}=[12]_{19} .
$$

(3) Let $x, y \in G$ be two arbitrary elements. As $G$ is a group both $x$ and $y$ have inverses $x^{-1}$ and $y^{-1}$. Moreover we recall that for any $a, b \in G$ $(a b)^{-1}=b^{-1} a^{-1}$. Using this fact with $a=y^{-1}, b=x^{-1}$ and the definition of $f$, we get

$$
x y=\left(x^{-1}\right)^{-1}\left(y^{-1}\right)^{-1}=\left(y^{-1} x^{-1}\right)^{-1}=f\left(y^{-1} x^{-1}\right)
$$

Since $f$ is a homomorphism,

$$
x y=f\left(y^{-1} x^{-1}\right)=f\left(y^{-1}\right) f\left(x^{-1}\right)=y x
$$

We conclude that $G$ is abelian.
(4) (a) Using the given relations, we get $\tau \sigma=\sigma^{-1} \tau, \sigma^{-1}=\sigma^{6}$ and $\tau=\tau^{-1}$. So
$\tau \sigma^{2} \tau \sigma=\tau \sigma^{2}(\tau \sigma)=\tau \sigma^{2}\left(\sigma^{-1} \tau\right)=(\tau \sigma) \tau=\sigma^{-1} \tau^{2}=\sigma^{-1}=\sigma^{6}$.
(b) Let $\gamma=\sigma^{4}$. Then

$$
\begin{aligned}
& \tau \sigma \gamma=\tau \sigma \sigma^{4}=\tau \sigma^{5} \\
& \gamma \tau \sigma=\sigma^{4} \tau \sigma=\sigma^{-3} \tau \sigma=\tau \sigma^{3} \sigma=\tau \sigma^{4}
\end{aligned}
$$

If $\tau \sigma^{5}=\tau \sigma^{4}$ then $\sigma=\mathrm{id}$. This is impossible as $\sigma$ has order 7 in $D_{14}$. Hence $\gamma(\tau \sigma) \neq(\tau \sigma) \gamma$ and $\gamma \notin C_{D_{14}}(\tau \sigma)$.
(c) We first note that

$$
\sigma^{-6} \circ \gamma\left([0]_{14}\right)=\sigma^{-6}\left([6]_{14}\right)=[0]_{14} .
$$

Moreover

$$
\sigma^{-6} \circ \gamma\left([1]_{14}\right)=\sigma^{-6}\left([5]_{14}\right)=[-1]_{14}=\tau\left([1]_{14}\right) .
$$

Therefore $\sigma^{-6} \circ \gamma=\tau$ or $\gamma=\sigma^{6} \circ \tau$. Using the relations, we can now simplify this to

$$
\gamma=\sigma^{6} \tau=\sigma^{-1} \tau=\tau \sigma
$$

