QUIZ 2, VERSION A, MATH103A, SUMMER 2021

1. Determine if the following statements are true or false. Briefly justify your answer.
(a) (2 point) $(\mathbb{Z} \backslash\{0\}, \cdot)$ is a group.
(b) (2 point) $\mathbb{Q} \backslash\{0\}$ is a subgroup of $(\mathbb{Q},+)$.
(c) (2 points) $\left(\mathbb{Z}_{15} \backslash\left\{[0]_{15}\right\}, \cdot\right)$ is a group.
(d) (2 point) $[2]_{7}$ is in the kernel of f where $f: \mathbb{Z}_{7}^{\times} \rightarrow \mathbb{Z}_{7}^{\times}, f\left([a]_{7}\right):=[a]_{7}^{3}$.
(e) (2 point) S_{3} is abelian.
2. (5 points) Explain why $[13]_{20}$ is in \mathbb{Z}_{20}^{\times}and find an integer x such that $[13]_{20}^{-1}=[x]_{20}$.
3. (5 points) Suppose G is a group and $f: G \rightarrow G, f(g)=g^{2}$ is a group homomorphism. Prove that G is abelian.
4. Suppose n is a positive integer and $n \geq 3$. Let \mathcal{C}_{n} be the cycle with n vertices which are labeled by elements of \mathbb{Z}_{n} and $[x]_{n}$ is connected to $[y]_{n}$ if and only if $[y]_{n}-[x]_{n}= \pm[1]_{n}$. Recall that the group of symmetries of \mathcal{C}_{n} is the dihedral group $D_{2 n}$ with $2 n$ elements and

$$
\begin{equation*}
D_{2 n}=\left\{\mathrm{id}, \sigma, \ldots, \sigma^{n-1}, \tau, \tau \circ \sigma, \ldots, \tau \circ \sigma^{n-1}\right\} \tag{1}
\end{equation*}
$$

where $\sigma: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}, \sigma(x):=x+1$ and $\tau: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}, \tau(x):=-x$. Let's recall that $\sigma^{n}=\mathrm{id}, \tau^{2}=\mathrm{id}$, and $\tau \circ \sigma \circ \tau^{-1}=\sigma^{-1}$.
(a) (4 points) Find out which element of D_{10} is $\tau \circ \sigma^{2} \circ \tau$ (an element of the form given in (1)).
(b) (4 points) Show that σ^{3} is not in the centralizer group $C_{D_{10}}(\tau)$.
(c) (2 points) Suppose $\gamma \in D_{10}, \gamma\left([0]_{10}\right)=[4]_{10}$, and $\gamma\left([1]_{10}\right)=[3]_{10}$. Find out which element of D_{10} is γ (an element of the form given in (1)).

