QUIZ 2, VERSION A - SOLUTIONS

Problem 1.

Part a. The set $\mathbb{Z} \backslash\{0\}$ is not a group under multiplication. Notice that $2 \in \mathbb{Z} \backslash\{0\}$ does not have a multiplicative inverse. To see this, suppose that $k \in \mathbb{Z} \backslash\{0\}$ such that $2 k=1$. Then we have that

$$
1=|2 k|=2|k| \geq 2 \cdot 1>1
$$

which is a contradiction.
Part b. The subset $\mathbb{Q} \backslash\{0\} \subset \mathbb{Q}$ is not a subgroup under addition since it does not contain the neutral element (0).

Part c. The set $\mathbb{Z}_{15} \backslash\left\{[0]_{15}\right\}$ is not a group under multiplication. To see this, notice that $[3]_{15}$ does not have a multiplicative inverse since $\operatorname{gcd}(3,15)=3 \neq 1$.

Part d. We have that

$$
f\left([2]_{7}\right)=[2]_{7}^{3}=\left[2^{3}\right]_{7}=[8]_{7}=[1]_{7}
$$

and $[1]_{7}$ is the identity element of \mathbb{Z}_{7}^{\times}. Thus $[2]_{7} \in \operatorname{ker} f$.
Part e. The group S_{3} is not abelian since S_{n} is not abelian for any $n \geq 3$.
Problem 2. First we do the Euclidean algorithm

$$
\begin{aligned}
20 & =1 \cdot 13+7 \\
13 & =1 \cdot 7+6 \\
7 & =1 \cdot 6+1 \\
6 & =6 \cdot 1 .
\end{aligned}
$$

Now we calculate $x, y \in \mathbb{Z}$ such that $20 x+13 y=1$:

$$
\binom{1}{0}=\left(\begin{array}{cc}
0 & 1 \\
1 & -6
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)\binom{20}{13}=\left(\begin{array}{cc}
2 & -3 \\
-13 & 20
\end{array}\right)\binom{20}{13} .
$$

Therefore $2 \cdot 20+(-3) \cdot 13=1$ so $[13]_{20}^{-1}=[-3]_{20}=[17]_{20}$.
Problem 3. First notice that since for any $g \in G$, we have that $g^{2}=e$, we have that $g=g^{-1}$. Therefore, for any $x, y \in G$,

$$
x y=(x y)^{-1}=y^{-1} x^{-1}=y x
$$

so G is abelian.

Problem 4.

Part a. Suppose that $x \in \mathbb{Z}_{n}$. Then we have that

$$
\tau \circ \sigma^{2} \circ \tau(x)=\tau\left(\sigma^{2}(\tau(x))\right)=\tau\left(\sigma^{2}(-x)\right)=\tau(-x+2)=-(-x+2)=x-2 .
$$

Thus $\tau \circ \sigma^{2} \circ \tau=\sigma^{-2}$.

Part b. We have that

$$
\sigma^{3} \in C_{D_{1} 0}(\tau) \Longleftrightarrow \tau \sigma^{3}=\sigma^{3} \tau=\tau \sigma^{3} \tau^{-1}=\sigma^{3} .
$$

Thus we only have to show that $\tau \sigma^{3} \tau^{-1} \neq \sigma^{3}$. Notice that

$$
\tau \circ \sigma^{3} \circ \tau^{-1}\left([0]_{10}\right)=\tau \circ \sigma^{3}\left([0]_{10}\right)=\tau\left([3]_{10}\right)=[-3]_{10}=[7]_{10} .
$$

Since $\sigma^{3}\left([0]_{10}\right)=[3]_{10} \neq[7]_{10}$ we have the desired result.
Part e. First notice that

$$
\sigma^{-4} \circ \gamma\left([0]_{10}\right)=\sigma^{-4}\left([4]_{10}\right)=[0]_{10} .
$$

Since

$$
\sigma^{-4} \circ \gamma\left([1]_{10}\right)=[-1]_{10}
$$

we have that $\sigma^{-4} \circ \gamma=\tau$. Thus $\gamma=\sigma^{4} \circ \tau$, but that's not quite the right form we want. However, notice that for any $x \in \mathbb{Z}_{10}$, we have that

$$
\sigma^{4} \circ \tau(x)=\sigma^{4}(-x)=-x+4
$$

This is the same as $\tau \circ \sigma^{-4}$, so $\gamma=\tau \circ \sigma^{4}$. Alternatively, you can notice that $\tau \circ \sigma^{n} \circ \tau^{-1}=\sigma^{-n}$ for any $n \in \mathbb{Z}$. (Look at the $7 / 19$ office hour to see a more thorough explanation. Essentially how one can use $\tau \sigma \tau^{-1}=\sigma^{-1}$ to understand the multiplication table of the dihedral group.)

