QUIZ 1 VERSION B SOLUTIONS
 MATH 103A, SUMMER 2021

(1) Suppose $a, b, c \in \mathbf{Z} \backslash\{0\}$ and $\operatorname{gcd}(a, b)=1$. If $a \mid b c$ then $a \mid c$.
(2) Solution 1. Notice that $[11]_{36}[x]_{36}=[1]_{36}$ if and only if $11 x \equiv 1(\bmod 36)$. The latter means that $11 x-1=36 y$ for some integer y. Hence we are looking for an integer solution for $11 x-36 y=1$. We know that we can use Euclid's algorithm to do this.

$$
\begin{aligned}
36 & =11 \cdot 3+3 \\
11 & =3 \cdot 3+2 \\
3 & =2 \cdot 1+1 \\
2 & =1 \cdot 2+0 .
\end{aligned}
$$

Hence as it is discussed in the lectures, we have

$$
\binom{1}{0}=\left(\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -3
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -3
\end{array}\right)\binom{36}{11} .
$$

We have
$\left(\begin{array}{cc}0 & 1 \\ 1 & -3\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ 1 & -3\end{array}\right)=\left(\begin{array}{cc}1 & -3 \\ -3 & 10\end{array}\right)$ and $\left(\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right)\left(\begin{array}{cc}1 & -3 \\ -3 & 10\end{array}\right)=\left(\begin{array}{cc}-3 & 10 \\ 4 & -13\end{array}\right)$.
Hence

$$
\left(\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right)\left(\begin{array}{cc}
-3 & 10 \\
4 & -13
\end{array}\right)=\left(\begin{array}{cc}
4 & -13 \\
* & *
\end{array}\right),
$$

and so $1=4 \cdot 36+(-13) * 11$. Therefore $[-13]_{36}=[23]_{36}$ is a desired solution.

Solution 2. Similar to the beginning of the first solution, we have to find an integer solution for $11 x-36 y=1$. Hence we have to find a solution for the following congruence relation

$$
36 y \equiv-1 \quad(\bmod 11)
$$

Since $36 \equiv 3(\bmod 11)$, we have to solve $3 y \equiv-1(\bmod 11)$. Notice that $3 \cdot 4=12 \equiv 1(\bmod 11)$. Hence -4 is a solution of the above congruence relation. Hence $y=-4$ should correspond to an integer solution of $11 x-$ $36 y=1$. From this we obtain the same answer as in the first solution.
(3) Using Euclid's division algorithm, we get

$$
\begin{aligned}
703 & =629 \cdot 1+74 \\
629 & =74 \cdot 8+37 \\
74 & =37 \cdot 2+0
\end{aligned}
$$

Therefore $\operatorname{gcd}(703,629)=37$. Now, as we have seen in the lectures,

$$
\binom{37}{0}=\left(\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -8
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)\binom{703}{629} .
$$

Since $\left(\begin{array}{cc}0 & 1 \\ 1 & -8\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right)=\left(\begin{array}{cc}1 & -1 \\ -8 & 9\end{array}\right)$, we obtain

$$
\left(\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -8
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
-8 & 9 \\
* & *
\end{array}\right) .
$$

Thus $37=(703) \cdot(-8)+(629) \cdot(9)$.
(4) Suppose $[x]_{n}=[y]_{n}$ then $n \mid(y-x)$. Since $m \mid n$, we have $m \mid(y-x)$ and therefore $[x]_{m}=[y]_{m}$. In other words,

$$
f\left([x]_{n}\right)=[x]_{m}=[y]_{m}=f\left([y]_{n}\right)
$$

and f is well defined.
(5) solution 1 . We observe that for every integer n,

$$
1=11 \cdot(5 n+1)-5 \cdot(11 n+2)
$$

Therefore $\operatorname{gcd}(11 n+2,5 n+1)=1$.
Solution 2. We try to follow Euclid's idea and make use of the equation $\operatorname{gcd}(a, b)=$ $\operatorname{gcd}(a-q b, b)$ for every integer q. Choosing an appropriate q, we reduce the coefficient of n. Hence we have

$$
\operatorname{gcd}(11 n+2,5 n+1)=\operatorname{gcd}(11 n+2-(2)(5 n+1), 5 n+1)=\operatorname{gcd}(n, 5 n+1)
$$

and

$$
\operatorname{gcd}(5 n+1, n)=\operatorname{gcd}((5 n+1)-5 n, n)=\operatorname{gcd}(1, n)=1
$$

This completes the solution.

