HOMEWORK ASSIGNMENTS

1. Week 1

1. Find all $x \in \mathbb{Z}$ such that $3 x+7$ is divisible by 11 .
2. Suppose $a, b, n \in \mathbb{Z}$. Prove that if $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)=1$, then $\operatorname{gcd}(a b, n)=1$.
3. Suppose m and n are two positive integers. Prove that $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}, f\left([x]_{n}\right):=[x]_{m}$ is a well-defined function if and only if $m \mid n$.
4. Find all the solutions of $[14]_{21}[x]_{21}=[28]_{21}$.

5 . Let n be a positive integer. For a positive divisor d of n, let

$$
A_{d}:=\{k \in \mathbb{Z} \mid 1 \leq k \leq n, \operatorname{gcd}(k, n)=d\}
$$

(a) Prove that $\left|A_{d}\right|=\phi\left(\frac{n}{d}\right)$.
(hint. $\operatorname{gcd}(k, n)=d$ iff $\operatorname{gcd}\left(\frac{k}{d}, \frac{n}{d}\right)=1$, and $\phi(m)=|\{\ell \in \mathbb{Z} \mid 1 \leq \ell \leq m, \operatorname{gcd}(\ell, m)=1\}|$.)
(b) Prove that $\sum_{d \mid n, d>0} \phi\left(\frac{n}{d}\right)=n$.
(hint. Notice that $\left\{A_{d}|d| n, d>0\right\}$ is a partition of $\{1, \ldots, n\}$.)

2. Week 2

1. Use Euclid's algorithm to write $\operatorname{gcd}(198,47)$ as an integer linear combination of 198 and 47.
2. Suppose (G, \cdot) is a group and $x, y \in G$. Suppose $x^{n}=y^{n}$ and $x^{m}=y^{m}$ for some non-zero integers m, n such that $\operatorname{gcd}(m, n)=1$. Prove that $x=y$. (hint. notice that there are integers r and s such that $r m+s n=1$.)
3. Suppose (G, \cdot) is a group and for every $g \in G, g^{2}=e_{G}$ where e_{G} is the neutral element of G. Prove that G is abelian; that means for every $x, y \in G, x \cdot y=y \cdot x$.
4. Suppose \mathcal{G} is an infinite path whose vertices are integer points and $i \in \mathbb{Z}$ is connected to exactly two points $i-1$ and $i+1$. Let $\sigma: \mathbb{Z} \rightarrow \mathbb{Z}, \sigma(x):=x+1$ and $\tau: \mathbb{Z} \rightarrow \mathbb{Z}, \tau(x):=-x$.
(a) Prove that σ and τ are symmetries of \mathcal{G}.
(b) Prove that if γ is a symmetry of \mathcal{G} and $\gamma(0)=0$ and $\gamma(1)=1$, then γ is the identity map.
(c) Prove that if γ is a symmetry of $\mathcal{G}, \gamma(0)=0, \gamma(1)=-1$, then $\gamma=\tau$.
(d) Prove that $\operatorname{Sym}(\mathcal{G})=\left\{\sigma^{i} \mid i \in \mathbb{Z}\right\} \cup\left\{\sigma^{i} \circ \tau \mid i \in \mathbb{Z}\right\}$.

3. Week 3

1. Suppose $f: G \rightarrow H$ is a group homomorphism. Prove that f is injective if and only if $\operatorname{ker} f=\left\{e_{G}\right\}$ where e_{G} is the neutral element of G.
2. Suppose (G, \cdot) is a group and $g, x, y \in G$. Prove that $x \cdot g \cdot x^{-1}=y \cdot g \cdot y^{-1}$ if and only if $x^{-1} \cdot y \in C_{G}(g)$.
3. Suppose (G, \cdot) is a group. An automorphism of G is a bijective group homomorphism $f: G \rightarrow G$. The set of all automorphisms of G is denoted by $\operatorname{Aut}(G)$. The set $\operatorname{Aut}(G)$ can be viewed as the group of symmetries of G. Convince yourself that $(\operatorname{Aut}(G), \circ)$ is a group where $f_{1} \circ f_{2}$ is the composite of two automorphisms f_{1} and f_{2}.
(a) Prove that for every $g \in G, c_{g}: G \rightarrow G, c_{g}(x):=g \cdot x \cdot g^{-1}$ is an automorphism of G.
(b) Let $c: G \rightarrow \operatorname{Aut}(G), c(g):=c_{g}$. Prove that c is a group homomorphism.
(c) Prove that $\operatorname{ker} c=Z(G)$.
4. Suppose m and n are two positive integers and $\operatorname{gcd}(m, n)=1$. Let

$$
f: \mathbb{Z}_{m n} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n}, f\left([x]_{m n}\right):=\left([x]_{m},[x]_{n}\right)
$$

(a) Use problem 3 , week 1 , to show that f is a well-defined function.
(b) Prove that for an integer $x, m \mid x$ and $n \mid x$ if and only if $m n \mid x$. (hint. let $x=m k$ for some integer k. Since $n \mid m k$ and $\operatorname{gcd}(n, m)=1$, by Euclid's lemma $n \mid k$.)
(c) Prove that f is injective.
(d) Prove that f is surjective. (hint. notice that $\left|\mathbb{Z}_{m n}\right|=\left|\mathbb{Z}_{m} \times \mathbb{Z}_{n}\right|$.)
(e) Prove that f is a group homomorphism.
(f) Prove that $[x]_{m n} \in \mathbb{Z}_{m n}^{\times}$if and only if $f\left([x]_{m n}\right) \in\left(\mathbb{Z}_{m}^{\times}\right) \times\left(\mathbb{Z}_{n}^{\times}\right)$.
(g) Prove that $\phi(m n)=\phi(m) \phi(n)$.

4. Week 4

1. Suppose G is a finite abelian group, $a, b \in G$, and $\operatorname{gcd}(o(a), o(b))=1$.
(a) Prove that $\langle a\rangle \cap\langle b\rangle=\left\{e_{G}\right\}$. (Hint. Argue that $|\langle a\rangle \cap\langle b\rangle|$ divides $|\langle a\rangle|$ and $|\langle b\rangle|$. This can be done either using the fact that there is a bijection between subgroups of a cyclic group and positive divisors of its order, or Lagrange's theorem.)
(b) Prove that $o(a b)=o(a) o(b)$. (Hint. suppose $(a b)^{m}=e_{G}$ if and only if $a^{m}=b^{-m}$. In this case, they are in $\langle a\rangle \cap\langle b\rangle$.)
(c) Prove that $a \in\langle a b\rangle$. (Hint. Consider $(a b)^{o(b)}$.)
(d) Prove that $\langle a b\rangle=\langle a, b\rangle$; in particular, $\langle a, b\rangle$ is a cyclic group.
2. Suppose G is a finite group of order n, and for every positive integer m the equation $x^{m}=e_{G}$ has at most m solutions in G. For every integer d, let $\Psi(d)$ be the number of elements of G that have order d.
(a) Prove that if $\Psi(d) \neq 0$, then $\Psi(d)=\phi(d)$ where ϕ is the Euler-phi function.
(b) Use the fact that order of every element of g divides n to show that $\sum_{d \mid n, d \geq 1} \Psi(d)=n$.
(c) Use the previous parts and problem 5 , week 1 , to show that $\Psi(d)=\phi(d)$ if $d \mid n$ and $d \geq 1$.
(d) Prove that G is a cyclic group.
3. Let $\sigma:=\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 4 & 3 & 2 & 5 & 1 & 6 & 9 & 10 & 8 & 7\end{array}\right) \in S_{10}$.
(a) Find a cycle decomposition of σ.
(b) Find out whether σ is odd or even.
(c) Find a cycle decomposition of σ^{2}.
(d) Find $o(\sigma)$.
(e) Find $o\left(\tau \sigma^{18} \tau^{-1}\right)$, where $\tau \in S_{10}$.
