Fifth problem set
Friday, September 1, 2017
1:42 PM

1. Prove the following isomorphisms:
(a) $\mathbb{Z}[x] /_{n \mathbb{Z}[x]} \simeq \mathbb{Z}_{n}[x]$ for any $n \in \mathbb{Z}^{2}$.
(b) $\mathbb{Q}[x] /\langle(x+1)(x-2)\rangle) \mathbb{Q}[x] /\langle x+1\rangle \oplus \mathbb{Q}[x] /\langle x-2\rangle$
(Hint. Consider $f(x) \longmapsto(f(x)+\langle x+1\rangle, f(x)+\langle x-2\rangle)$;
You might find $\frac{1}{3}(x+1)$ and $\frac{-1}{3}(x-2)$ useful!)
(c) $\mathbb{Q}[x] /\left\langle x^{2}-2 x+6\right\rangle \simeq\left\{c_{0}+c_{1} A \mid c_{0}, c_{1} \in \mathbb{Q}\right\}$
where $A=\left[\begin{array}{cc}0 & -6 \\ 1 & 2\end{array}\right]$.
(So the RHS $=\left\{\left.\left[\begin{array}{ll}c_{0} & -6 c_{1} \\ c_{1} & c_{0}+2 c_{1}\end{array}\right] \right\rvert\, c_{0}, c_{1} \in \mathbb{Q}\right\}$.)
(Hint. Consider the evalution at $A, \phi_{A}: Q[x] \rightarrow M_{2}(Q)$.)
2. Let $I=\langle 2, x\rangle$ in $\mathbb{Z}[x]$. Prove that I is NOT a principal ideal. (So $\mathbb{Z}[x]$ is NOT a PID.)
3. a) Show that $\sqrt{-10}$ is irreducible in $\mathbb{Z}[\sqrt{-10}]$
(You can use without proof that $\mathbb{Z}[\sqrt{-10}]=\{a+b \sqrt{-10} \mid a, b \in \mathbb{Z}\}$ is a ring.) (Hint. If $\sqrt{-10}=(a+\sqrt{-10} b)(c+\sqrt{-10} d)$, then their norm as complex numbers are equal $\left.\Rightarrow 10=\left(a^{2}+10 b^{2}\right)\left(c^{2}+10 d^{2}.\right).\right)$

Fifth problem set
Friday, September 1, 2017
2:11 PM
(b) Show that $5 \times 2 \in\langle\sqrt{-10}\rangle$ and $5,2 \notin\langle\sqrt{-10}\rangle$.

And conclude that $\langle\sqrt{-10}\rangle$ is not prime.
(c) Prove that $\mathbb{Z}[\sqrt{-10}]$ is NOT a PID.

CHins. Look for a result with the keywords:
PID, irreducible, maximal.)
4.@Prove that $Q[x] /\left\langle x^{4}-2 x^{2}-2\right\rangle \simeq\left\{c_{0}+c_{1} \alpha+c_{2} \alpha^{2}+c_{3} \alpha^{3} \mid c_{i} \in Q_{Q}\right\}$ where $\quad \alpha=\sqrt{1+\sqrt{3}} \in \mathbb{R}$.
(b) Write α^{-1} in the form $c_{0}+c_{1} \alpha+c_{2} \alpha^{2}+c_{3} \alpha^{3}$ with $c_{i} \in Q$.
5. Let E be a field extension of \mathbb{Z}_{3}, which contains a zero α of $x^{3}-x+1$.
(a) Prove that $\mathbb{Z}_{3}[\alpha]=\left\{c_{0}+c_{1} \alpha+c_{2} \alpha^{2} \mid c_{i} \in \mathbb{Z}_{3}\right\}$ is a field.
(b) Find the number of elements of $\mathbb{Z}_{3}[\alpha]$.

