Fourth problem set

1. Prove that the following polynomials are irreducible in $\mathbb{Q}[x]$.
(a) $x^{3}-3 x^{2}+3 x+4$.
(b) $x^{n}-12$ where $n \in \mathbb{Z}^{+}$.
(c) $x^{5}-10 x^{3}+25 x^{2}-51 x+2017$
(Only in this part of the problem you are allowed to use the following (advance) theorem:

Let p be a prime and $a \in \mathbb{Z}_{p} \backslash\{0\}$. Then $x^{p}-x+a$ is irreducible in $\mathbb{Z}_{p}[x]$.)
2. (a) Prove that $f(x)=x^{5}-3 x^{3}+6 x^{2}+9 x-21$ is irreducible in $\mathbb{Q}[x]$. (Hint. Think about a useful criterion!)
(b) Let α be a real zero of $f_{0}(x)$. Suppose $\Phi_{\alpha}: \mathbb{Q}[x] \rightarrow \mathbb{R}$ is the evaluation homomorphism; that means $\phi_{\alpha}(f(x))=f(\alpha)$. Prove that

$$
\operatorname{ker} \phi_{\alpha}=\left\langle f_{0}(x)\right\rangle
$$

(Hint. Use the fact that $Q[x]$ is a PID and part@.).

Fourth problem set
2:38 PM
3. (a) Prove that $\left\{\left.\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right] \right\rvert\, a, b \in \mathbb{Q}\right\}$ is a subring of $M_{2}(\mathbb{Q})$.
(b) Prove that $f: \mathbb{Q}[\sqrt{2}] \rightarrow\left\{\left.\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right] \right\rvert\, a, b \in \mathbb{Q}\right\}$,

$$
f(a+b \sqrt{2})=\left[\begin{array}{cc}
a & 2 b \\
b & a
\end{array}\right]
$$

is a ring isomorphism.

