DISCUSSION AND PROBLEM SESSION

1. Discussion and Problem sessions 1

For a field extension E of F, we let $\operatorname{Aut}_{F}(E)$ be the set of all F-isomorphims from E to E.

1.1. Some of the previous topics.

1. Suppose E is an extension field of F and $\alpha \in E$ is algebraic over F. Suppose n is a positive integer, $\operatorname{gcd}([F[\alpha]: F], n!)=1$, and $f(x) \in F[x]$ is of degree n. Prove that $F[\alpha]=F[f(\alpha)]$.
2. Suppose F is a field, $f(x) \in F[x]$ is irreducible, and E is a splitting field of $f(x)$ over F. Suppose there is $\alpha \in E$ such that

$$
f(\alpha)=f(\alpha+1)=0
$$

Prove that $\operatorname{Aut}_{F}(E)$ has an element of order p.
3. Suppose p is a prime which does not divide n. Let $\Phi_{n}(x)$ be the n-th cyclotomic polynomial and view it as an element of $\mathbb{Z}_{p}[x]$. Suppose $E_{n, p}$ is a splitting field of Φ_{n} over \mathbb{Z}_{p}.
(a) Suppose $\alpha \in E_{n, p}$ is a zero of Φ_{n}. Prove that $E_{n, p}=\mathbb{Z}_{p}[\alpha]$.
(b) Prove that $\operatorname{Aut}_{\mathbb{Z}_{p}}\left(E_{n, p}\right)$ is isomorphic to the subgroup of \mathbb{Z}_{n}^{\times}which is generated by $[p]_{n}$.
(c) Prove that all the irreducible factors of $\Phi_{n}(x)$ in $\mathbb{Z}_{p}[x]$ have the same degree and they are equal to the multiplicative order of p modulo n.

2. Discussion and Problem sessions 2

2.1. Field of rational functions.

1. Suppose F is a field. Let

$$
F(t):=\left\{\left.\frac{f(t)}{g(t)} \right\rvert\, f, g \in F[t]\right\}
$$

be the field of fractions of $F[t]$. Suppose $u:=\frac{f}{g} \notin F$ with $f, g \in F[t]$ and $\operatorname{gcd}(f, g)=1$. Let $K:=F(u)$ be the smallest subfield of $L:=F(t)$ which contains F and u.
(a) Consider $p(x):=u g(x)-f(x) \in K[x]$. Argue that t is a zero of p. Deduce that L / K is a finite extension.
(b) Argue that $\operatorname{deg} p=\max \{\operatorname{deg} f, \operatorname{deg} g\}$.
(c) Argue that p is irreducible in $F(x)[u]$.
(d) Notice that p is a primitive element of $F(x)[u]$ and deduce that p is irreducible in $F[x][u]$.
(e) Show that p is irreducible in $K[x]$.
(f) Prove that $[F(t): F(u)]=\max \{\operatorname{deg} f, \operatorname{deg} g\}$.
2. Suppose F is a field and $\theta \in \operatorname{Aut}_{F}(F(t))$. Prove that there is $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(F)$ such that

$$
\theta(t)=\frac{a t+b}{c t+d} .
$$

3. Prove that $\operatorname{Aut}_{F}(F(t)) \simeq \mathrm{PGL}_{2}(F)$ where $\mathrm{PGL}_{2}(F)=\mathrm{GL}_{2}(F) / F^{\times} I$.

2.2. Automorphisms of a field extension and permutation groups.

1. Suppose $f \in F[x]$ is a non-constant polynomial and E is a splitting field of f over F. Let $R:=$ $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be the set of zeros of f in E. Prove that $\operatorname{Aut}_{F}(E)$ can be embedded into the symmetric group S_{n}.
2. Suppose $f \in \mathbb{Q}[x]$ is an irreducible polynomial of prime degree p which has exactly two complex zeros. Let $E \subseteq \mathbb{C}$ be a splitting field of f over \mathbb{Q}. Prove that Aut (E) can be identified with a subgroup G of the symmetric group S_{p} such that

$$
(1,2, \ldots, p) \in G \text { and }(1, a) \in G
$$

for some $a \in\{2, \ldots, p\}$.

3. Discussion and Problem sessions 3

3.1. Automorphisms of a field extension and permutation groups.

1. Suppose $f \in F[x]$ is a non-constant polynomial and E is a splitting field of f over F. Let $R:=$ $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be the set of zeros of f in E. Prove that $\operatorname{Aut}_{F}(E)$ can be embedded into the symmetric group S_{n}.
2. Suppose $f \in \mathbb{Q}[x]$ is an irreducible polynomial of prime degree p which has exactly two complex non-real zeros. Let $E \subseteq \mathbb{C}$ be a splitting field of f over \mathbb{Q}. Prove that Aut ${ }_{\mathbb{Q}}(E)$ can be identified with a subgroup G of the symmetric group S_{p} such that

$$
(1,2, \ldots, p) \in G \text { and }(1, a) \in G
$$

for some $a \in\{2, \ldots, p\}$.

3.2. Fundamental Theorem of Galois Theory.

1. Consider the extension $\mathbb{Q}\left[\zeta_{3}, \sqrt[3]{2}\right] / \mathbb{Q}$.
(a) Give an isomorphism $\operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{3}, \sqrt[3]{2}\right]\right) \simeq S_{3}$.
(b) Use your isomorphism and the Galois correspondence to write down every intermediate subfield of $\mathbb{Q}\left[\zeta_{3}, \sqrt[3]{2}\right] / \mathbb{Q}$.
(c) Determine which intermediate subfields are Galois over \mathbb{Q}.
2. Prove any intermediate subfield of $\mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q}$ is Galois over \mathbb{Q}.
3. Suppose E / F is a finite (not necessarily Galois) extension. Define Ψ and Φ as in the fundamental theorem of Galois theory, i.e.

$$
\begin{array}{ll}
\Psi: \operatorname{Int}(E / F) \rightarrow \operatorname{Sub}\left(\operatorname{Aut}_{F}(E)\right), & \Psi(K):=\operatorname{Aut}_{K}(E), \\
\Phi: \operatorname{Sub}\left(\operatorname{Aut}_{F}(E)\right) \rightarrow \operatorname{Int}(E / F), & \Phi(G):=\operatorname{Fix}(G) .
\end{array}
$$

(a) Prove in this generality one still has $\Psi \circ \Phi=\mathrm{id}$, so Φ is injective and Ψ is surjective.
(b) Prove $\operatorname{Im}(\Phi)=\{K \in \operatorname{Int}(E / F) \mid E / K$ is Galois $\}$.

4. Discussion and Problem sessions 4

4.1. Fundamental Theorem of Galois Theory.

1. Prove any intermediate subfield of $\mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q}$ is Galois over \mathbb{Q}.
2. Suppose E / F is a finite (not necessarily Galois) extension. Define Ψ and Φ as in the fundamental theorem of Galois theory, i.e.

$$
\begin{array}{ll}
\Psi: \operatorname{Int}(E / F) \rightarrow \operatorname{Sub}\left(\operatorname{Aut}_{F}(E)\right), & \Psi(K):=\operatorname{Aut}_{K}(E), \\
\Phi: \operatorname{Sub}\left(\operatorname{Aut}_{F}(E)\right) \rightarrow \operatorname{Int}(E / F), & \Phi(G):=\operatorname{Fix}(G) .
\end{array}
$$

(a) Prove in this generality one still has $\Psi \circ \Phi=\mathrm{id}$, so Φ is injective and Ψ is surjective.
(b) Prove $\operatorname{Im}(\Phi)=\{K \in \operatorname{Int}(E / F) \mid E / K$ is Galois $\}$.

4.2. Separable closure and purely inseparable extensions.

1. Suppose E / F is a field extension and $K \in \operatorname{Int}(E / F)$. Prove that E / F is purely inseparable if and only if E / K and K / F are purely inseparable.

4.3. Galois group of polynomials.

1. Suppose $f \in F[x]$ is a separable irreducible polynomial of degree n, K is a splitting field of f over F, and consider the action of $\operatorname{Aut}_{F}(K)$ on the set of zeros X of f in K. Prove that $\operatorname{Aut}_{F}(K)$ acts transitively on X; that means for every $x, x^{\prime} \in X$ there is $\theta \in \operatorname{Aut}_{F}(K)$ such that $\theta(x)=x^{\prime}$. Prove that n divides $\left|\operatorname{Aut}_{F}(K)\right|$.
2. Suppose $f \in F[x]$ does not have multiple zeros in a splitting field K over F, and consider the action of $\operatorname{Aut}_{F}(K)$ on the set of zeros X of f in K. Prove that number of $\operatorname{Aut}_{F}(K)$-orbits in X is the same as the number of irreducible factors of f in $F[x]$.

5. Discussion and Problem sessions 5

5.1. compositum. Let Ω / F be a field extension and E, K be intermediate subfields. We define the compositum of E and K in Ω, denoted $E K$, to be the smallest subfield of Ω containing both E and K, i.e. the intersection of all subfields of Ω containing both E and K.

1. Suppose K / F is finite, say $K=F\left[\beta_{1}, \ldots, \beta_{m}\right]$. Write $F_{i}=F\left[\beta_{1}, \ldots, \beta_{i}\right]$ and $F_{0}=F$, and similarly write $E_{i}=E\left[\beta_{1}, \ldots, \beta_{i}\right]$ with $E_{0}=E$. Prove that $\left[E_{i+1}: E_{i}\right] \leq\left[F_{i+1}: F_{i}\right]$ for each $i \in[0, m-1]$, and conclude that $E K / E$ is finite with $[E K: E] \leq[K: F]$.
2. Conclude if E / F and K / F are both finite then $E K / F$ is finite with $[E K: F] \leq[E: F][K: F]$.
3. Prove if E / F and K / F are both finite and $\operatorname{gcd}([E: F],[K: F])=1$, then $[E K: F]=[E: F][K: F]$.
4. Prove if E / F and K / F are both finite normal (resp. finite separable) then $E K / F$ is also normal (resp. separable).
5. Prove if K / F is finite Galois then $E K / E$ and $K / E \cap K$ are both finite Galois, and that we have an isomorphism $\operatorname{Aut}_{E}(E K) \rightarrow \operatorname{Aut}_{E \cap K}(K)$ via restriction.
6. Suppose E / F and K / F are both finite Galois, as then is $E K / F$. Show we have an injective homomorphism $\operatorname{Aut}_{F}(E K) \rightarrow \operatorname{Aut}_{F}(E) \times \operatorname{Aut}_{F}(K)$ sending $\sigma \mapsto\left(\left.\sigma\right|_{E},\left.\sigma\right|_{K}\right)$. Prove if $E \cap K=F$ then this map is an isomorphism.

5.2. Solvability by radicals.

1. Prove that $f(x)=2 x^{5}-10 x+5$ is not solvable by radicals over \mathbb{Q}.
2. Prove that every polynomial of degree at most 4 over a characteristic zero field is solvable by radicals.
5.3. Discriminant. Suppose F is a field of characteristic 0 . For $f \in F[x]$, suppose E is a splitting field of f and $\alpha_{i} \in E$ are such that

$$
f(x)=\operatorname{ld}(f)\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)
$$

Let $\Delta_{f}:=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)$. The discriminant D_{f} of f is $D_{f}:=\Delta^{2}$.

1. Prove that $D_{f} \in F$.
2. Prove that $\Delta_{f} \in F$ if and only if $\mathcal{G}_{f, F}$ is a subgroup of the alternating group.

6. Discussion and Problem sessions 6

6.1. Solvability by radicals.

1. Prove that $f(x)=2 x^{5}-10 x+5$ is not solvable by radicals over \mathbb{Q}.
2. Prove that every polynomial of degree at most 4 over a characteristic zero field is solvable by radicals.
6.2. Discriminant. Suppose F is a field of characteristic 0 . For $f \in F[x]$, suppose E is a splitting field of f and $\alpha_{i} \in E$ are such that

$$
f(x)=\operatorname{ld}(f)\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)
$$

Let $\Delta_{f}:=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)$. The discriminant D_{f} of f is $D_{f}:=\Delta_{f}^{2}$.

1. Prove that $D_{f} \in F$.
2. Prove that $\Delta_{f} \in F$ if and only if $\mathcal{G}_{f, F}$ is a subgroup of the alternating group.
3. Find D_{f} where $f(x)=x^{3}-p x+q$.

6.3. Some Galois groups.

1. Find the Galois group $\mathcal{G}_{f, \mathbb{Q}}$ where $f(x)=x^{3}-4 x+2$. (Hint: use discriminant.)
2. Prove that $\mathbb{Q}[\sqrt{2}, \sqrt{3}] / \mathbb{Q}$ is a Galois extension and Aut $(\mathbb{Q}[\sqrt{2}, \sqrt{3}]) \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.
3. Prove that there is a Galois extension F / \mathbb{Q} such that $\operatorname{Aut}_{\mathbb{Q}}(F) \simeq \mathbb{Z} / p \mathbb{Z}$ where p is a prime.

7. Discussion and Problem sessions 6

Recall:
7.1. Discriminant. Suppose F is a field of characteristic 0 . For $f \in F[x]$, suppose E is a splitting field of f and $\alpha_{i} \in E$ are such that

$$
f(x)=\operatorname{ld}(f)\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)
$$

Let $\Delta_{f}:=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)$. The discriminant D_{f} of f is $D_{f}:=\Delta_{f}^{2}$.

1. Prove that $D_{f} \in F$.
2. Prove that $\Delta_{f} \in F$ if and only if $\mathcal{G}_{f, F}$ is a subgroup of the alternating group.
3. Find D_{f} where $f(x)=x^{3}-p x+q$. (Answer is $4 p^{3}-27 q^{2}$.)

7.2. Some Galois groups.

1. Find the Galois group $\mathcal{G}_{f, \mathbb{Q}}$ where $f(x)=x^{3}-4 x+2$. (Hint: use discriminant.)
2. Prove that $\mathbb{Q}[\sqrt{2}, \sqrt{3}] / \mathbb{Q}$ is a Galois extension and $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}[\sqrt{2}, \sqrt{3}]) \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.
3. Prove that there is a Galois extension F / \mathbb{Q} such that $\operatorname{Aut}_{\mathbb{Q}}(F) \simeq \mathbb{Z} / p \mathbb{Z}$ where p is a prime.
4. Prove that $x^{p}-4 x+2$ is not solvable by radicals over \mathbb{Q} if p is a prime more than 3 .

8. Discussion and Problem sessions 8

1. Suppose E / F be a finite extension and \bar{F} is an algebraic closure of F. Prove that $[E: F]_{s}$ equals the number of distinct F-embeddings of E into \bar{F}.
2. Suppose E / F be a finite separable extension and \bar{F} is an algebraic closure of F. For $\alpha \in E$ define

$$
N_{E / F}(\alpha):=\prod_{\sigma \in \operatorname{Embed}_{F}(E, \bar{F})} \sigma(\alpha)
$$

(a) Prove when E / F is Galois this agrees with the definition of $N_{E / F}$ given in class.
(b) Prove one still has $N_{E / F}(\alpha) \in F$ for all $\alpha \in E$.
(c) Prove that $N_{E / F}: E^{\times} \rightarrow F^{\times}$is a group homomorphism.
(d) Prove if $K \in \operatorname{Int}(E / F)$ one has $N_{K / F} \circ N_{E / K}=N_{E / F}$.
3. Let A be a commutative unital ring. Suppose $S \subseteq A$ is multiplicatively close; that means $1 \in S$ and $s_{1} s_{2} \in S$ for every $s_{1}, s_{2} \in S$. Suppose $I_{0} \unlhd A$ and $I_{0} \cap S=\varnothing$.
(a) Let

$$
\Sigma_{I_{0}, S}:=\left\{I \unlhd A \mid I_{0} \subseteq I, I_{0} \cap S=\varnothing\right\}
$$

Prove that Σ has a maximal element with respect to inclusion.
(b) Suppose P is a maximal element of $\Sigma_{I_{0}, S}$. Prove that P is a prime ideal.
4. Let A be a commutative unital ring. Prove that the set of nilpotent elements of A is precisely the intersection of all prime ideals of A. [Hint: if $a \in A$ is not nilpotent,consider $S_{a}:=\left\{1, a, a^{2}, \ldots\right\}$ and the previous problem.]

9. Discussion and Problem sessions 9

9.1. Separable extensions and embeddings.

1. Suppose E / F be a finite extension and \bar{F} is an algebraic closure of F. Prove that $[E: F]_{s}$ equals the number of distinct F-embeddings of E into \bar{F}. (This part we discussed in length in the previous session.)
2. Suppose E / F be a finite separable extension and \bar{F} is an algebraic closure of F. For $\alpha \in E$ define

$$
N_{E / F}(\alpha):=\prod_{\sigma \in \operatorname{Embed}_{F}(E, \bar{F})} \sigma(\alpha)
$$

(a) Prove when E / F is Galois this agrees with the definition of $N_{E / F}$ given in class.
(b) Prove one still has $N_{E / F}(\alpha) \in F$ for all $\alpha \in E$.
(c) Prove that $N_{E / F}: E^{\times} \rightarrow F^{\times}$is a group homomorphism.
(d) Prove if $K \in \operatorname{Int}(E / F)$ one has $N_{K / F} \circ N_{E / K}=N_{E / F}$.
3. Let A be a commutative unital ring. Suppose $S \subseteq A$ is multiplicatively close; that means $1 \in S$ and $s_{1} s_{2} \in S$ for every $s_{1}, s_{2} \in S$. Suppose $I_{0} \unlhd A$ and $I_{0} \cap S=\varnothing$.
(a) Let

$$
\Sigma_{I_{0}, S}:=\left\{I \unlhd A \mid I_{0} \subseteq I, I \cap S=\varnothing\right\}
$$

Prove that Σ has a maximal element with respect to inclusion.
(b) Suppose P is a maximal element of $\Sigma_{I_{0}, S}$. Prove that P is a prime ideal.
4. Let A be a commutative unital ring. Prove that the set of nilpotent elements of A is precisely the intersection of all prime ideals of A. [Hint: if $a \in A$ is not nilpotent,consider $S_{a}:=\left\{1, a, a^{2}, \ldots\right\}$ and the previous problem.]

10.1. Separable extensions and embeddings.

1. Suppose \bar{F} is an algebraic closure of F and $E \in \operatorname{Int}(\overline{\mathrm{~F}} / F)$ is a separable extension of F. Prove if $K \in \operatorname{Int}(E / F)$ one has $N_{K / F} \circ N_{E / K}=N_{E / F}$.

11. Discussion and Problem sessions 11

11.1. Gauss sum, cyclotomic extensions, and quadratic reciprocity. Suppose p is an odd prime and $\zeta_{p}:=e^{\frac{2 \pi i}{p}}$.
(a) Prove that there is a surjective group homomorphism $\chi_{0}: \mathbb{Z}_{p}^{\times} \rightarrow\{ \pm 1\}$. Show that $\chi_{0}(a)=1$ is $a=b^{2}$ for some $b \in \mathbb{Z}_{p}^{\times}$and $\chi_{0}(a)=-1$ if there is no $b \in \mathbb{Z}_{p}^{\times}$such that $a=b^{2}$. We often use Legendre symbol and write $\chi(a)=\left(\frac{a}{p}\right)$.
(b) Let $g_{p}:=\sum_{a \in \mathbb{Z}_{p}^{\times}} \chi(a) \zeta_{p}^{a}$. For $a \in \mathbb{Z}_{p}^{\times}$, let $\theta_{a} \in \operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{p}\right]\right)$ be such that $\theta_{a}\left(\zeta_{p}\right)=\zeta_{p}^{a}$. Prove that for every $a \in \mathbb{Z}_{p}^{\times}, \theta_{a}\left(g_{p}\right)=\left(\frac{a}{p}\right) g_{p}$.
(c) Let $K:=\operatorname{Fix}\left(\left\{\theta_{a} \mid a \in \operatorname{ker} \chi\right\}\right)$. Prove that K is the unique quadratic extension of $\mathbb{Q} \operatorname{in} \operatorname{Int}\left(\mathbb{Q}\left[\zeta_{p}\right] / \mathbb{Q}\right)$ and $K=\mathbb{Q}\left[g_{p}\right]$.
(d) Prove that $g_{p}=\sum_{i \in \mathbb{Z}_{p}} \zeta_{p}^{i^{2}}$.
(e) Use $\sum_{a \in \mathbb{Z}_{p}^{\times}} \theta_{a}\left(g_{p}\right) \theta_{-a}\left(g_{p}\right)$ to prove that $g_{p}^{2}=\left(\frac{-1}{p}\right) p$. (Notice that $\sum_{a \in \mathbb{Z}_{p}} \zeta_{p}^{i a}=[i=0] p$ where $[i=0]$ is 1 if $i=0$ and 0 if $i \neq 0$.)
(f) Suppose q is an odd prime. Use the fact that \mathbb{Z}_{q}^{\times}is cyclic to prove that for every $a \in \mathbb{Z}$ with $\operatorname{gcd}(a, q)=1$, we have that $a^{\frac{q-1}{2}}=\left(\frac{a}{q}\right)$ modulo q.
(g) Prove that g_{p}^{q-1} is equal to $\left(\frac{-1}{p}\right)^{\frac{q-1}{2}} p^{\frac{q-1}{2}}$ in the quotient ring $\mathbb{Z}\left[\zeta_{p}\right] /\langle q\rangle$; and so $g_{p}^{q-1}=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}\left(\frac{p}{q}\right)$ modulo q. In particular, g_{p} in $\mathbb{Z}\left[\zeta_{p}\right] /\langle q\rangle$ is a unit and $g_{p}^{q}=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}\left(\frac{p}{q}\right) g_{p}$ modulo q.
(h) Use the fact that $\mathbb{Z}\left[\zeta_{p}\right] /\langle q\rangle$ has characteristic q to show $g_{p}^{q}=\theta_{q}\left(g_{p}\right)$ modulo q.
(i) (Quadratic reciprocity) Prove that $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$.
(j) (Very special case of Kronecker-Weber theorem) Suppose $F \subseteq \mathbb{C}$ is a quadratic extension of \mathbb{Q}. Prove that there is a positive integer n such that $F \subseteq \mathbb{Q}\left[\zeta_{n}\right]$.

12. Discussion and Problem sessions 12

12.1. Gauss sum, cyclotomic extensions, and quadratic reciprocity. Suppose p is an odd prime and $\zeta_{p}:=e^{\frac{2 \pi i}{p}}$. (we have already discussed the first 4 parts and part (f).)
(a) Prove that there is a surjective group homomorphism $\chi_{0}: \mathbb{Z}_{p}^{\times} \rightarrow\{ \pm 1\}$. Show that $\chi_{0}(a)=1$ is $a=b^{2}$ for some $b \in \mathbb{Z}_{p}^{\times}$and $\chi_{0}(a)=-1$ if there is no $b \in \mathbb{Z}_{p}^{\times}$such that $a=b^{2}$. We often use Legendre symbol and write $\chi(a)=\left(\frac{a}{p}\right)$.
(b) Let $g_{p}:=\sum_{a \in \mathbb{Z}_{p}^{\times}} \chi(a) \zeta_{p}^{a}$. For $a \in \mathbb{Z}_{p}^{\times}$, let $\theta_{a} \in \operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{p}\right]\right)$ be such that $\theta_{a}\left(\zeta_{p}\right)=\zeta_{p}^{a}$. Prove that for every $a \in \mathbb{Z}_{p}^{\times}, \theta_{a}\left(g_{p}\right)=\left(\frac{a}{p}\right) g_{p}$.
(c) Let $K:=\operatorname{Fix}\left(\left\{\theta_{a} \mid a \in \operatorname{ker} \chi\right\}\right)$. Prove that K is the unique quadratic extension of $\mathbb{Q} \operatorname{in} \operatorname{Int}\left(\mathbb{Q}\left[\zeta_{p}\right] / \mathbb{Q}\right)$ and $K=\mathbb{Q}\left[g_{p}\right]$.
(d) Prove that $g_{p}=\sum_{i \in \mathbb{Z}_{p}} \zeta_{p}^{i^{2}}$.
(e) Use $\sum_{a \in \mathbb{Z}_{p}^{\times}} \theta_{a}\left(g_{p}\right) \theta_{-a}\left(g_{p}\right)$ to prove that $g_{p}^{2}=\left(\frac{-1}{p}\right) p$. (Notice that $\sum_{a \in \mathbb{Z}_{p}} \zeta_{p}^{i a}=[i=0] p$ where $[i=0]$ is 1 if $i=0$ and 0 if $i \neq 0$.)
(f) Suppose q is an odd prime. Use the fact that \mathbb{Z}_{q}^{\times}is cyclic to prove that for every $a \in \mathbb{Z}$ with $\operatorname{gcd}(a, q)=1$, we have that $a^{\frac{q-1}{2}}=\left(\frac{a}{q}\right)$ modulo q.
(g) Prove that g_{p}^{q-1} is equal to $\left(\frac{-1}{p}\right)^{\frac{q-1}{2}} p^{\frac{q-1}{2}}$ in the quotient ring $\mathbb{Z}\left[\zeta_{p}\right] /\langle q\rangle$; and so $g_{p}^{q-1}=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}\left(\frac{p}{q}\right)$ modulo q. In particular, g_{p} in $\mathbb{Z}\left[\zeta_{p}\right] /\langle q\rangle$ is a unit and $g_{p}^{q}=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}\left(\frac{p}{q}\right) g_{p}$ modulo q.
(h) Use the fact that $\mathbb{Z}\left[\zeta_{p}\right] /\langle q\rangle$ has characteristic q to show $g_{p}^{q}=\theta_{q}\left(g_{p}\right)$ modulo q.
(i) (Quadratic reciprocity) Prove that $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$.
(j) (Very special case of Kronecker-Weber theorem) Suppose $F \subseteq \mathbb{C}$ is a quadratic extension of \mathbb{Q}. Prove that there is a positive integer n such that $F \subseteq \mathbb{Q}\left[\zeta_{n}\right]$.

13. Discussion and Problem sessions 13

13.1. Gauss sum, cyclotomic extensions, and quadratic reciprocity.

1. (Very special case of Kronecker-Weber theorem) Suppose $F \subseteq \mathbb{C}$ is a quadratic extension of \mathbb{Q}. Prove that there is a positive integer n such that $F \subseteq \mathbb{Q}\left[\zeta_{n}\right]$.
13.2. Determinant. For this part, we go over some of the HW assignments for week 8 and use them for the following problems.
2. Suppose R is a unital commutative ring. Prove that $X \in \mathrm{GL}_{n}(R)$ (that means $X \in \mathrm{M}_{n}(R)$ is a unit) if and only if $\operatorname{det}(X) \in R^{\times}$.
3. Suppose R is a ring with only one maximal ideal M. Suppose $f: R^{n} \rightarrow R^{n}$ is a surjective R module homomorphism and $f\left(\mathbf{e}_{j}\right)=\sum_{i=1}^{n} f_{i j} \mathbf{e}_{i}$. Prove that $\left[f_{i j}\right] \in \mathrm{GL}_{n}(R)$. Deduce that f is an isomorphism. (Recall that $R^{\times}=R \backslash M$.)
4. Suppose R is a unital commutative ring, $A \in \mathrm{M}_{n}(R)$, and $A=\left[a_{i j}\right]$.
(a) Consider the following scalar product $R[x] \times R^{n} \rightarrow R^{n}$,

$$
\left(\sum_{s=0}^{m} c_{s} x^{s}\right) \cdot v:=\sum_{s=0}^{m} c_{s}(A)^{s} v
$$

where A is the transpose of A. Convince yourself that $V:=R^{n}$ is an $R[x]$-module with respect to the above scalar multiplication. Notice that

$$
x \cdot \mathbf{e}_{j}=\sum_{i=1}^{n} a_{i j} \mathbf{e}_{i}
$$

Try to understand the following equation:

$$
\left(\begin{array}{cccc}
x-a_{11} & -a_{21} & \cdots & -a_{n 1} \tag{1}\\
-a_{12} & x-a_{22} & \cdots & -a_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
-a_{1 n} & -a_{2 n} & \cdots & x-a_{n n}
\end{array}\right) \cdot\left(\begin{array}{c}
\mathbf{e}_{1} \\
\mathbf{e}_{2} \\
\vdots \\
\mathbf{e}_{n}
\end{array}\right)=0
$$

(b) Use the previous part and deduce that

$$
\operatorname{adj}\left(x I-A^{T}\right) \cdot\left(\left(x I-A^{T}\right) \cdot\left(\begin{array}{c}
\mathbf{e}_{1} \\
\mathbf{e}_{2} \\
\vdots \\
\mathbf{e}_{n}
\end{array}\right)\right)=0
$$

where A^{T} is the transpose A.
(c) Prove that $\operatorname{det}\left(x I-A^{T}\right) \cdot \mathbf{e}_{i}=0$ for every i.
(d) Prove that $f\left(A^{T}\right)=0$ where $f(x):=\operatorname{det}(x I-A)$, and deduce that $f(A)=0$ as well.

14. Discussion and Problem sessions 14

14.1. Determinant. A few remarks on the Caley-Hamilton theorem based on the questions and discussions with some of the students during the previous session:
Suppose R is a unital commutative ring and $A \in \mathrm{M}_{n}(R)$. Let $f_{A}(x):=\operatorname{det}(x I-A) \in R[x]$ be the characteristic polynomial of A. In the lecture using a rational canonical form of A and in the previous Discussion and Problem session using an $R[x]$-module structure of R^{n} which comes out of multiplication by A we proved the Cayley-Hamilton theorem which states that $f_{A}(A)=0$.
Here is one way of understanding this equation: let S be the subring of $\mathrm{M}_{n}(R)$ which is generated by R and the matrix A. This means S is the image of the evaluation map $\phi_{A}: R[x] \rightarrow \mathrm{M}_{n}(R)$. This ring is denoted by $R[A]$. Notice that $S:=R[A]$ is a unital commutative ring which has R as a subring. Suppose $A=\left[a_{i j}\right] \in \mathrm{M}_{n}(R)$ and consider the following matrix in $\mathrm{M}_{n}(S)$:

$$
B:=\left(\begin{array}{cccc}
A-a_{11} & -a_{12} & \cdots & -a_{1 n} \\
-a_{21} & A-a_{22} & \cdots & -a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
-a_{n 1} & -a_{n 2} & \cdots & A-a_{n n}
\end{array}\right)
$$

The Cayley-Hamilton theorem states that $\operatorname{det} B=0$. Notice that determinant of the above matrix and its transpose are the same, it is the same as what we have in (1) evaluated at $x=A$.
We can view B as an n^{2}-by- n^{2} matrix with entries in R. In this case, we are having diagonal blocks of A subtracting by a block matrix where the (i, j)-block is a scalar matrix given by $a_{i j}$. Starting with two square matrices $X:=\left[x_{i j}\right] \in \mathrm{M}_{n}(R)$ and $Y:=\left[y_{i j}\right] \in \mathrm{M}_{m}(R)$, we can create a new one in $\mathrm{M}_{n m}(R)$ using X as a block and multiplying it by entries of Y :

$$
X \otimes Y:=\left(\begin{array}{ccc}
y_{11} X & \cdots & y_{1 n} X \\
\vdots & \ddots & \vdots \\
y_{n 1} X & \cdots & y_{n n} X
\end{array}\right)
$$

With this notation, $B=A \otimes I-I \otimes A$. This does not quite help us get an easier proof of the Caley-Hamilton theorem, but it might give us more insight on the involved subtleties.

14.2. Module theory.

1. Suppose R is a unital commutative ring and M is an R-module. Let

$$
\operatorname{Ann}_{R}(M):=\{r \in R \mid \forall m \in M, r \cdot m=0\}
$$

(a) Prove that $\operatorname{Ann}_{R}(M)$ is an ideal of R.
(b) Let $(a+\operatorname{Ann}(M)) \cdot m:=a \cdot m$ for $a \in R$ and $m \in M$. Prove that this is a well-defined operator and M is an $(R / \operatorname{Ann}(M))$-module with respect to this scalar multiplication.
(c) We say M is a faithful R-module if $\operatorname{Ann}_{R}(M)=0$. Prove that M is a faithful $R / \operatorname{Ann}_{R}(M)$ module.
2. Suppose R is a unital commutative ring and M is an R-module which is generated by m_{1}, \ldots, m_{n}.
(a) Suppose J is an ideal of R and $J M=M$ where

$$
J M:=\left\{\sum_{i=1}^{m} r_{i} x_{i} \mid \forall r_{i} \in J, x_{i} \in M, m \in \mathbb{Z}^{+}\right\} .
$$

Prove that there is $A:=\left[a_{i j}\right] \in \mathrm{M}_{n}(J)$ such that

$$
m_{i}=\sum_{j=1}^{n} a_{i j} \cdot m_{j}
$$

and try to understand the following equation:

$$
\left(\begin{array}{cccc}
1-a_{11} & -a_{12} & \cdots & -a_{1 n} \\
-a_{21} & 1-a_{22} & \cdots & -a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
-a_{n 1} & -a_{n 2} & \cdots & 1-a_{n n}
\end{array}\right) \cdot\left(\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{n}
\end{array}\right)=0 .
$$

(b) Prove that $\operatorname{det}(I-A) \in \operatorname{Ann}_{R}(M)$ and $\operatorname{det}(I-A)=1+a$ for some $a \in J$.
(c) (Nakayama's lemma) Suppose M is a faithful finitely generated R-module, J is an ideal of R, and $J M=M$. Prove that $J=R$.
(d) Suppose M is a finitely generated R-module and for every maximal ideal \mathfrak{m} of $R, \mathfrak{m} M=M$. Prove that $M=0$.
3. Suppose R has only one maximal ideal \mathfrak{m}, and M is a finitely generated R-module.
(a) Prove that $M / \mathfrak{m} M$ is a finite dimensional vector space over R / \mathfrak{m} with respect to the following scalar multiplication $(r+\mathfrak{m}) \cdot(m+\mathfrak{m} M):=r \cdot m+\mathfrak{m} M$.
(b) Prove that the minimum number of elements needed to generate M is equal to $\operatorname{dim}_{R / \mathfrak{m}}(M / \mathfrak{m} M)$.

15. Discussion and Problem sessions 15

15.1. Module theory.

1. Suppose R is a unital commutative ring and M is an R-module which is generated by m_{1}, \ldots, m_{n}.
(a) Suppose J is an ideal of R and $J M=M$ where

$$
J M:=\left\{\sum_{i=1}^{m} r_{i} x_{i} \mid \forall r_{i} \in J, x_{i} \in M, m \in \mathbb{Z}^{+}\right\}
$$

Prove that there is $A:=\left[a_{i j}\right] \in \mathrm{M}_{n}(J)$ such that

$$
m_{i}=\sum_{j=1}^{n} a_{i j} \cdot m_{j}
$$

and try to understand the following equation:

$$
\left(\begin{array}{cccc}
1-a_{11} & -a_{12} & \cdots & -a_{1 n} \\
-a_{21} & 1-a_{22} & \cdots & -a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
-a_{n 1} & -a_{n 2} & \cdots & 1-a_{n n}
\end{array}\right) \cdot\left(\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{n}
\end{array}\right)=0 .
$$

(b) Prove that $\operatorname{det}(I-A) \in \operatorname{Ann}_{R}(M)$ and $\operatorname{det}(I-A)=1+a$ for some $a \in J$.
(c) (Nakayama's lemma) Suppose M is a faithful finitely generated R-module, J is an ideal of R, and $J M=M$. Prove that $J=R$.
(d) Suppose M is a finitely generated R-module and for every maximal ideal \mathfrak{m} of $R, \mathfrak{m} M=M$. Prove that $M=0$.
2. Suppose R has only one maximal ideal \mathfrak{m}, and M is a finitely generated R-module.
(a) Prove that $M / \mathfrak{m} M$ is a finite dimensional vector space over R / \mathfrak{m} with respect to the following scalar multiplication $(r+\mathfrak{m}) \cdot(m+\mathfrak{m} M):=r \cdot m+\mathfrak{m} M$.
(b) Prove that the minimum number of elements needed to generate M is equal to $\operatorname{dim}_{R / \mathfrak{m}}(M / \mathfrak{m} M)$.
15.2. misc.

1. (Game of Chomps) Suppose there are cookies on the lattice points in the first quarter of the plane; that means $\left\{(m, n) \in \mathbb{Z}^{2} \mid m, n \geq 0\right\}$. Two players are playing the following game: at players' turn they choose a square (m, n) and eat all the cookies that are located at $\left(m^{\prime}, n^{\prime}\right)$ where either $m^{\prime} \geq m$
or $n^{\prime} \geq n$. The cookie at $(0,0)$ is poisoned, and the player who eats it immediately loses. Prove that any game of Chomp ends after finitely many moves.
2. Suppose A is a unital commutative ring and I is an ideal of A. Let

$$
\sqrt{I}:=\left\{a \in A \mid a^{n} \in I \text { for some posistive integer } n\right\}
$$

(a) Prove that \sqrt{I} is an ideal of A.
(b) Prove that \sqrt{I} is the intersection of all the prime ideals of A which contain I.
3. Suppose R is a unital commutative ring and $a_{i j} \in \mathrm{M}_{n}(R)$. Let S be the subring of $\mathrm{M}_{n}(R)$ which is generated by R and $a_{i j}$'s. Suppose S is commutative. Let $A:=\left[a_{i j}\right]$ and view it both as an element of $\mathrm{M}_{k}(S)$ and $\mathrm{M}_{n k}(R)$. Show that $\operatorname{det}_{R}(A)=\operatorname{det}_{R}\left(\operatorname{det}_{S}(A)\right)$.

16. Discussion and Problem sessions 16

16.1. misc.

1. (Game of Chomps) Suppose there are cookies on the lattice points in the first quarter of the plane; that means $\left\{(m, n) \in \mathbb{Z}^{2} \mid m, n \geq 0\right\}$. Two players are playing the following game: at players' turn they choose a square (m, n) and eat all the cookies that are located at $\left(m^{\prime}, n^{\prime}\right)$ where $m^{\prime} \geq m$ and $n^{\prime} \geq n$. The cookie at $(0,0)$ is poisoned, and the player who eats it immediately loses. Prove that any game of Chomp ends after finitely many moves.
2. Suppose A is a unital commutative ring and I is an ideal of A. Let

$$
\sqrt{I}:=\left\{a \in A \mid a^{n} \in I \text { for some posistive integer } n\right\}
$$

(a) Prove that \sqrt{I} is an ideal of A.
(b) Prove that \sqrt{I} is the intersection of all the prime ideals of A which contain I.
3. Suppose R is a unital commutative ring and $a_{i j} \in \mathrm{M}_{n}(R)$. Let S be the subring of $\mathrm{M}_{n}(R)$ which is generated by R and $a_{i j}$'s. Suppose S is commutative. Let $A:=\left[a_{i j}\right]$ and view it both as an element of $\mathrm{M}_{k}(S)$ and $\mathrm{M}_{n k}(R)$. Show that $\operatorname{det}_{R}(A)=\operatorname{det}_{R}\left(\operatorname{det}_{S}(A)\right)$.
4. Suppose D is an integral domain and $f, g \in D[x] \backslash D$. Then the resultant $r(f, g)=0$ if and only if they have a common divisor of positive degree.
16.2. Hilbert's Nullstellensatz. State various forms of Hilbert's Nullstellensatz.

