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1. Discussion and Problem sessions 1

For a field extension E of F , we let AutF (E) be the set of all F -isomorphims from E to E.

1.1. Some of the previous topics.

1. Suppose E is an extension field of F and α ∈ E is algebraic over F . Suppose n is a positive integer,
gcd([F [α] : F ], n!) = 1, and f(x) ∈ F [x] is of degree n. Prove that F [α] = F [f(α)].

2. Suppose F is a field, f(x) ∈ F [x] is irreducible, and E is a splitting field of f(x) over F . Suppose
there is α ∈ E such that

f(α) = f(α+ 1) = 0.

Prove that AutF (E) has an element of order p.

3. Suppose p is a prime which does not divide n. Let Φn(x) be the n-th cyclotomic polynomial and
view it as an element of Zp[x]. Suppose En,p is a splitting field of Φn over Zp.
(a) Suppose α ∈ En,p is a zero of Φn. Prove that En,p = Zp[α].
(b) Prove that AutZp(En,p) is isomorphic to the subgroup of Z×n which is generated by [p]n.
(c) Prove that all the irreducible factors of Φn(x) in Zp[x] have the same degree and they are equal

to the multiplicative order of p modulo n.
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2.1. Field of rational functions.

1. Suppose F is a field. Let

F (t) :=
{f(t)

g(t)
| f, g ∈ F [t]

}
be the field of fractions of F [t]. Suppose u := f

g 6∈ F with f, g ∈ F [t] and gcd(f, g) = 1. Let

K := F (u) be the smallest subfield of L := F (t) which contains F and u.
(a) Consider p(x) := ug(x)− f(x) ∈ K[x]. Argue that t is a zero of p. Deduce that L/K is a finite

extension.
(b) Argue that deg p = max{deg f, deg g}.
(c) Argue that p is irreducible in F (x)[u].
(d) Notice that p is a primitive element of F (x)[u] and deduce that p is irreducible in F [x][u].
(e) Show that p is irreducible in K[x].
(f) Prove that [F (t) : F (u)] = max{deg f, deg g}.

2. Suppose F is a field and θ ∈ AutF (F (t)). Prove that there is

(
a b
c d

)
∈ GL2(F ) such that

θ(t) =
at+ b

ct+ d
.
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3. Prove that AutF (F (t)) ' PGL2(F ) where PGL2(F ) = GL2(F )/F×I.

2.2. Automorphisms of a field extension and permutation groups.

1. Suppose f ∈ F [x] is a non-constant polynomial and E is a splitting field of f over F . Let R :=
{α1, . . . , αn} be the set of zeros of f in E. Prove that AutF (E) can be embedded into the symmetric
group Sn.

2. Suppose f ∈ Q[x] is an irreducible polynomial of prime degree p which has exactly two complex
zeros. Let E ⊆ C be a splitting field of f over Q. Prove that AutQ(E) can be identified with a
subgroup G of the symmetric group Sp such that

(1, 2, . . . , p) ∈ G and (1, a) ∈ G

for some a ∈ {2, . . . , p}.
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3.1. Automorphisms of a field extension and permutation groups.

1. Suppose f ∈ F [x] is a non-constant polynomial and E is a splitting field of f over F . Let R :=
{α1, . . . , αn} be the set of zeros of f in E. Prove that AutF (E) can be embedded into the symmetric
group Sn.

2. Suppose f ∈ Q[x] is an irreducible polynomial of prime degree p which has exactly two complex
non-real zeros. Let E ⊆ C be a splitting field of f over Q. Prove that AutQ(E) can be identified
with a subgroup G of the symmetric group Sp such that

(1, 2, . . . , p) ∈ G and (1, a) ∈ G

for some a ∈ {2, . . . , p}.

3.2. Fundamental Theorem of Galois Theory.

1. Consider the extension Q[ζ3,
3
√

2]/Q.

(a) Give an isomorphism AutQ(Q[ζ3,
3
√

2]) ' S3.
(b) Use your isomorphism and the Galois correspondence to write down every intermediate subfield

of Q[ζ3,
3
√

2]/Q.
(c) Determine which intermediate subfields are Galois over Q.

2. Prove any intermediate subfield of Q[ζn]/Q is Galois over Q.
3. Suppose E/F is a finite (not necessarily Galois) extension. Define Ψ and Φ as in the fundamental

theorem of Galois theory, i.e.

Ψ : Int(E/F )→ Sub(AutF (E)), Ψ(K) := AutK(E), and

Φ : Sub(AutF (E))→ Int(E/F ), Φ(G) := Fix(G).

(a) Prove in this generality one still has Ψ ◦ Φ = id, so Φ is injective and Ψ is surjective.
(b) Prove Im(Φ) = {K ∈ Int(E/F ) | E/K is Galois}.
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4.1. Fundamental Theorem of Galois Theory.

1. Prove any intermediate subfield of Q[ζn]/Q is Galois over Q.
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2. Suppose E/F is a finite (not necessarily Galois) extension. Define Ψ and Φ as in the fundamental
theorem of Galois theory, i.e.

Ψ : Int(E/F )→ Sub(AutF (E)), Ψ(K) := AutK(E), and

Φ : Sub(AutF (E))→ Int(E/F ), Φ(G) := Fix(G).

(a) Prove in this generality one still has Ψ ◦ Φ = id, so Φ is injective and Ψ is surjective.
(b) Prove Im(Φ) = {K ∈ Int(E/F ) | E/K is Galois}.

4.2. Separable closure and purely inseparable extensions.

1. Suppose E/F is a field extension and K ∈ Int(E/F ). Prove that E/F is purely inseparable if and
only if E/K and K/F are purely inseparable.

4.3. Galois group of polynomials.

1. Suppose f ∈ F [x] is a separable irreducible polynomial of degree n, K is a splitting field of f over
F , and consider the action of AutF (K) on the set of zeros X of f in K. Prove that AutF (K) acts
transitively on X; that means for every x, x′ ∈ X there is θ ∈ AutF (K) such that θ(x) = x′. Prove
that n divides |AutF (K)|.

2. Suppose f ∈ F [x] does not have multiple zeros in a splitting field K over F , and consider the action
of AutF (K) on the set of zeros X of f in K. Prove that number of AutF (K)-orbits in X is the same
as the number of irreducible factors of f in F [x].
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5.1. compositum. Let Ω/F be a field extension and E,K be intermediate subfields. We define the com-
positum of E and K in Ω, denoted EK, to be the smallest subfield of Ω containing both E and K, i.e. the
intersection of all subfields of Ω containing both E and K.

1. Suppose K/F is finite, say K = F [β1, . . . , βm]. Write Fi = F [β1, . . . , βi] and F0 = F , and similarly
write Ei = E[β1, . . . , βi] with E0 = E. Prove that [Ei+1 : Ei] ≤ [Fi+1 : Fi] for each i ∈ [0,m − 1],
and conclude that EK/E is finite with [EK : E] ≤ [K : F ].

2. Conclude if E/F and K/F are both finite then EK/F is finite with [EK : F ] ≤ [E : F ][K : F ].
3. Prove if E/F and K/F are both finite and gcd([E : F ], [K : F ]) = 1, then [EK : F ] = [E : F ][K : F ].
4. Prove if E/F and K/F are both finite normal (resp. finite separable) then EK/F is also normal

(resp. separable).
5. Prove if K/F is finite Galois then EK/E and K/E ∩K are both finite Galois, and that we have an

isomorphism AutE(EK)→ AutE∩K(K) via restriction.
6. Suppose E/F and K/F are both finite Galois, as then is EK/F . Show we have an injective homo-

morphism AutF (EK) → AutF (E) × AutF (K) sending σ 7→ (σ|E , σ|K). Prove if E ∩K = F then
this map is an isomorphism.

5.2. Solvability by radicals.

1. Prove that f(x) = 2x5 − 10x+ 5 is not solvable by radicals over Q.
2. Prove that every polynomial of degree at most 4 over a characteristic zero field is solvable by radicals.

5.3. Discriminant. Suppose F is a field of characteristic 0. For f ∈ F [x], suppose E is a splitting field of
f and αi ∈ E are such that

f(x) = ld(f)(x− α1) · · · (x− αn).

Let ∆f :=
∏
i<j(αi − αj). The discriminant Df of f is Df := ∆2.
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1. Prove that Df ∈ F .
2. Prove that ∆f ∈ F if and only if Gf,F is a subgroup of the alternating group.
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6.1. Solvability by radicals.

1. Prove that f(x) = 2x5 − 10x+ 5 is not solvable by radicals over Q.
2. Prove that every polynomial of degree at most 4 over a characteristic zero field is solvable by radicals.

6.2. Discriminant. Suppose F is a field of characteristic 0. For f ∈ F [x], suppose E is a splitting field of
f and αi ∈ E are such that

f(x) = ld(f)(x− α1) · · · (x− αn).

Let ∆f :=
∏
i<j(αi − αj). The discriminant Df of f is Df := ∆2

f .

1. Prove that Df ∈ F .
2. Prove that ∆f ∈ F if and only if Gf,F is a subgroup of the alternating group.
3. Find Df where f(x) = x3 − px+ q.

6.3. Some Galois groups.

1. Find the Galois group Gf,Q where f(x) = x3 − 4x+ 2. (Hint: use discriminant.)

2. Prove that Q[
√

2,
√

3]/Q is a Galois extension and AutQ(Q[
√

2,
√

3]) ' Z/2Z⊕ Z/2Z.
3. Prove that there is a Galois extension F/Q such that AutQ(F ) ' Z/pZ where p is a prime.
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Recall:

7.1. Discriminant. Suppose F is a field of characteristic 0. For f ∈ F [x], suppose E is a splitting field of
f and αi ∈ E are such that

f(x) = ld(f)(x− α1) · · · (x− αn).

Let ∆f :=
∏
i<j(αi − αj). The discriminant Df of f is Df := ∆2

f .

1. Prove that Df ∈ F .
2. Prove that ∆f ∈ F if and only if Gf,F is a subgroup of the alternating group.
3. Find Df where f(x) = x3 − px+ q. (Answer is 4p3 − 27q2.)

7.2. Some Galois groups.

1. Find the Galois group Gf,Q where f(x) = x3 − 4x+ 2. (Hint: use discriminant.)

2. Prove that Q[
√

2,
√

3]/Q is a Galois extension and AutQ(Q[
√

2,
√

3]) ' Z/2Z⊕ Z/2Z.
3. Prove that there is a Galois extension F/Q such that AutQ(F ) ' Z/pZ where p is a prime.
4. Prove that xp − 4x+ 2 is not solvable by radicals over Q if p is a prime more than 3.
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8. Discussion and Problem sessions 8

1. Suppose E/F be a finite extension and F is an algebraic closure of F . Prove that [E : F ]s equals
the number of distinct F -embeddings of E into F .

2. Suppose E/F be a finite separable extension and F is an algebraic closure of F . For α ∈ E define

NE/F (α) :=
∏

σ∈EmbedF (E,F )

σ(α).

(a) Prove when E/F is Galois this agrees with the definition of NE/F given in class.
(b) Prove one still has NE/F (α) ∈ F for all α ∈ E.

(c) Prove that NE/F : E× → F× is a group homomorphism.
(d) Prove if K ∈ Int(E/F ) one has NK/F ◦NE/K = NE/F .

3. Let A be a commutative unital ring. Suppose S ⊆ A is multiplicatively close; that means 1 ∈ S and
s1s2 ∈ S for every s1, s2 ∈ S. Suppose I0 EA and I0 ∩ S = ∅.
(a) Let

ΣI0,S := {I EA | I0 ⊆ I, I0 ∩ S = ∅}.
Prove that Σ has a maximal element with respect to inclusion.

(b) Suppose P is a maximal element of ΣI0,S . Prove that P is a prime ideal.
4. Let A be a commutative unital ring. Prove that the set of nilpotent elements of A is precisely the

intersection of all prime ideals of A. [Hint: if a ∈ A is not nilpotent,consider Sa := {1, a, a2, . . .} and
the previous problem.]
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9.1. Separable extensions and embeddings.

1. Suppose E/F be a finite extension and F is an algebraic closure of F . Prove that [E : F ]s equals
the number of distinct F -embeddings of E into F . (This part we discussed in length in the previous
session.)

2. Suppose E/F be a finite separable extension and F is an algebraic closure of F . For α ∈ E define

NE/F (α) :=
∏

σ∈EmbedF (E,F )

σ(α).

(a) Prove when E/F is Galois this agrees with the definition of NE/F given in class.
(b) Prove one still has NE/F (α) ∈ F for all α ∈ E.

(c) Prove that NE/F : E× → F× is a group homomorphism.
(d) Prove if K ∈ Int(E/F ) one has NK/F ◦NE/K = NE/F .

3. Let A be a commutative unital ring. Suppose S ⊆ A is multiplicatively close; that means 1 ∈ S and
s1s2 ∈ S for every s1, s2 ∈ S. Suppose I0 EA and I0 ∩ S = ∅.
(a) Let

ΣI0,S := {I EA | I0 ⊆ I, I ∩ S = ∅}.
Prove that Σ has a maximal element with respect to inclusion.

(b) Suppose P is a maximal element of ΣI0,S . Prove that P is a prime ideal.
4. Let A be a commutative unital ring. Prove that the set of nilpotent elements of A is precisely the

intersection of all prime ideals of A. [Hint: if a ∈ A is not nilpotent,consider Sa := {1, a, a2, . . .} and
the previous problem.]
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10.1. Separable extensions and embeddings.

1. Suppose F is an algebraic closure of F and E ∈ Int(F /F ) is a separable extension of F . Prove if
K ∈ Int(E/F ) one has NK/F ◦NE/K = NE/F .

11. Discussion and Problem sessions 11

11.1. Gauss sum, cyclotomic extensions, and quadratic reciprocity. Suppose p is an odd prime and

ζp := e
2πi
p .

(a) Prove that there is a surjective group homomorphism χ0 : Z×p → {±1}. Show that χ0(a) = 1 is

a = b2 for some b ∈ Z×p and χ0(a) = −1 if there is no b ∈ Z×p such that a = b2. We often use
Legendre symbol and write χ(a) = (ap ).

(b) Let gp :=
∑
a∈Z×

p
χ(a)ζap . For a ∈ Z×p , let θa ∈ AutQ(Q[ζp]) be such that θa(ζp) = ζap . Prove that for

every a ∈ Z×p , θa(gp) = (ap )gp.

(c) Let K := Fix({θa | a ∈ kerχ}). Prove that K is the unique quadratic extension of Q in Int(Q[ζp]/Q)
and K = Q[gp].

(d) Prove that gp =
∑
i∈Zp ζ

i2

p .

(e) Use
∑
a∈Z×

p
θa(gp)θ−a(gp) to prove that g2p = (−1p )p. (Notice that

∑
a∈Zp ζ

ia
p = [i = 0]p where [i = 0]

is 1 if i = 0 and 0 if i 6= 0.)
(f) Suppose q is an odd prime. Use the fact that Z×q is cyclic to prove that for every a ∈ Z with

gcd(a, q) = 1, we have that a
q−1
2 = (aq ) modulo q.

(g) Prove that gq−1p is equal to (−1p )
q−1
2 p

q−1
2 in the quotient ring Z[ζp]/〈q〉; and so gq−1p = (−1)

p−1
2 ·

q−1
2 (pq )

modulo q. In particular, gp in Z[ζp]/〈q〉 is a unit and gqp = (−1)
p−1
2 ·

q−1
2 (pq )gp modulo q.

(h) Use the fact that Z[ζp]/〈q〉 has characteristic q to show gqp = θq(gp) modulo q.

(i) (Quadratic reciprocity) Prove that (pq )( qp ) = (−1)
p−1
2 ·

q−1
2 .

(j) (Very special case of Kronecker-Weber theorem) Suppose F ⊆ C is a quadratic extension of Q. Prove
that there is a positive integer n such that F ⊆ Q[ζn].
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12.1. Gauss sum, cyclotomic extensions, and quadratic reciprocity. Suppose p is an odd prime and

ζp := e
2πi
p . (we have already discussed the first 4 parts and part (f).)

(a) Prove that there is a surjective group homomorphism χ0 : Z×p → {±1}. Show that χ0(a) = 1 is

a = b2 for some b ∈ Z×p and χ0(a) = −1 if there is no b ∈ Z×p such that a = b2. We often use
Legendre symbol and write χ(a) = (ap ).

(b) Let gp :=
∑
a∈Z×

p
χ(a)ζap . For a ∈ Z×p , let θa ∈ AutQ(Q[ζp]) be such that θa(ζp) = ζap . Prove that for

every a ∈ Z×p , θa(gp) = (ap )gp.

(c) Let K := Fix({θa | a ∈ kerχ}). Prove that K is the unique quadratic extension of Q in Int(Q[ζp]/Q)
and K = Q[gp].

(d) Prove that gp =
∑
i∈Zp ζ

i2

p .

(e) Use
∑
a∈Z×

p
θa(gp)θ−a(gp) to prove that g2p = (−1p )p. (Notice that

∑
a∈Zp ζ

ia
p = [i = 0]p where [i = 0]

is 1 if i = 0 and 0 if i 6= 0.)
(f) Suppose q is an odd prime. Use the fact that Z×q is cyclic to prove that for every a ∈ Z with

gcd(a, q) = 1, we have that a
q−1
2 = (aq ) modulo q.
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(g) Prove that gq−1p is equal to (−1p )
q−1
2 p

q−1
2 in the quotient ring Z[ζp]/〈q〉; and so gq−1p = (−1)

p−1
2 ·

q−1
2 (pq )

modulo q. In particular, gp in Z[ζp]/〈q〉 is a unit and gqp = (−1)
p−1
2 ·

q−1
2 (pq )gp modulo q.

(h) Use the fact that Z[ζp]/〈q〉 has characteristic q to show gqp = θq(gp) modulo q.

(i) (Quadratic reciprocity) Prove that (pq )( qp ) = (−1)
p−1
2 ·

q−1
2 .

(j) (Very special case of Kronecker-Weber theorem) Suppose F ⊆ C is a quadratic extension of Q. Prove
that there is a positive integer n such that F ⊆ Q[ζn].

13. Discussion and Problem sessions 13

13.1. Gauss sum, cyclotomic extensions, and quadratic reciprocity.

1. (Very special case of Kronecker-Weber theorem) Suppose F ⊆ C is a quadratic extension of Q. Prove
that there is a positive integer n such that F ⊆ Q[ζn].

13.2. Determinant. For this part, we go over some of the HW assignments for week 8 and use them for
the following problems.

1. Suppose R is a unital commutative ring. Prove that X ∈ GLn(R) (that means X ∈ Mn(R) is a unit)
if and only if det(X) ∈ R×.

2. Suppose R is a ring with only one maximal ideal M . Suppose f : Rn → Rn is a surjective R-
module homomorphism and f(ej) =

∑n
i=1 fijei. Prove that [fij ] ∈ GLn(R). Deduce that f is an

isomorphism. (Recall that R× = R \M .)
3. Suppose R is a unital commutative ring, A ∈ Mn(R), and A = [aij ].

(a) Consider the following scalar product R[x]×Rn → Rn,

(

m∑
s=0

csx
s) · v :=

m∑
s=0

cs(A)sv,

where A is the transpose of A. Convince yourself that V := Rn is an R[x]-module with respect
to the above scalar multiplication. Notice that

x · ej =

n∑
i=1

aijei.

Try to understand the following equation:

(1)


x− a11 −a21 · · · −an1
−a12 x− a22 · · · −an2

...
...

. . .
...

−a1n −a2n · · · x− ann

 ·


e1

e2

...
en

 = 0.

(b) Use the previous part and deduce that

adj(xI −AT ) · ((xI −AT ) ·


e1

e2

...
en

) = 0,

where AT is the transpose A.
(c) Prove that det(xI −AT ) · ei = 0 for every i.
(d) Prove that f(AT ) = 0 where f(x) := det(xI −A), and deduce that f(A) = 0 as well.
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14. Discussion and Problem sessions 14

14.1. Determinant. A few remarks on the Caley-Hamilton theorem based on the questions and discussions
with some of the students during the previous session:

Suppose R is a unital commutative ring and A ∈ Mn(R). Let fA(x) := det(xI − A) ∈ R[x] be the
characteristic polynomial of A. In the lecture using a rational canonical form of A and in the previous
Discussion and Problem session using an R[x]-module structure of Rn which comes out of multiplication by
A we proved the Cayley-Hamilton theorem which states that fA(A) = 0.

Here is one way of understanding this equation: let S be the subring of Mn(R) which is generated by R
and the matrix A. This means S is the image of the evaluation map φA : R[x] → Mn(R). This ring is
denoted by R[A]. Notice that S := R[A] is a unital commutative ring which has R as a subring. Suppose
A = [aij ] ∈ Mn(R) and consider the following matrix in Mn(S):

B :=


A− a11 −a12 · · · −a1n
−a21 A− a22 · · · −a2n

...
...

. . .
...

−an1 −an2 · · · A− ann


The Cayley-Hamilton theorem states that detB = 0. Notice that determinant of the above matrix and its
transpose are the same, it is the same as what we have in (1) evaluated at x = A.

We can view B as an n2-by-n2 matrix with entries in R. In this case, we are having diagonal blocks of A
subtracting by a block matrix where the (i, j)-block is a scalar matrix given by aij . Starting with two square
matrices X := [xij ] ∈ Mn(R) and Y := [yij ] ∈ Mm(R), we can create a new one in Mnm(R) using X as a
block and multiplying it by entries of Y :

X ⊗ Y :=

y11X · · · y1nX
...

. . .
...

yn1X · · · ynnX

 .

With this notation, B = A⊗I−I⊗A. This does not quite help us get an easier proof of the Caley-Hamilton
theorem, but it might give us more insight on the involved subtleties.

14.2. Module theory.

1. Suppose R is a unital commutative ring and M is an R-module. Let

AnnR(M) := {r ∈ R | ∀m ∈M, r ·m = 0}.

(a) Prove that AnnR(M) is an ideal of R.
(b) Let (a+ Ann(M)) ·m := a ·m for a ∈ R and m ∈M . Prove that this is a well-defined operator

and M is an (R/Ann(M))-module with respect to this scalar multiplication.
(c) We say M is a faithful R-module if AnnR(M) = 0. Prove that M is a faithful R/AnnR(M)-

module.
2. Suppose R is a unital commutative ring and M is an R-module which is generated by m1, . . . ,mn.

(a) Suppose J is an ideal of R and JM = M where

JM := {
m∑
i=1

rixi | ∀ri ∈ J, xi ∈M,m ∈ Z+}.

Prove that there is A := [aij ] ∈ Mn(J) such that

mi =

n∑
j=1

aij ·mj ,
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and try to understand the following equation:
1− a11 −a12 · · · −a1n
−a21 1− a22 · · · −a2n

...
...

. . .
...

−an1 −an2 · · · 1− ann

 ·

m1

m2

...
mn

 = 0.

(b) Prove that det(I −A) ∈ AnnR(M) and det(I −A) = 1 + a for some a ∈ J .
(c) (Nakayama’s lemma) Suppose M is a faithful finitely generated R-module, J is an ideal of R,

and JM = M . Prove that J = R.
(d) Suppose M is a finitely generated R-module and for every maximal ideal m of R, mM = M .

Prove that M = 0.
3. Suppose R has only one maximal ideal m, and M is a finitely generated R-module.

(a) Prove that M/mM is a finite dimensional vector space over R/m with respect to the following
scalar multiplication (r + m) · (m+ mM) := r ·m+ mM .

(b) Prove that the minimum number of elements needed to generate M is equal to dimR/m(M/mM).

15. Discussion and Problem sessions 15

15.1. Module theory.

1. Suppose R is a unital commutative ring and M is an R-module which is generated by m1, . . . ,mn.
(a) Suppose J is an ideal of R and JM = M where

JM := {
m∑
i=1

rixi | ∀ri ∈ J, xi ∈M,m ∈ Z+}.

Prove that there is A := [aij ] ∈ Mn(J) such that

mi =

n∑
j=1

aij ·mj ,

and try to understand the following equation:
1− a11 −a12 · · · −a1n
−a21 1− a22 · · · −a2n

...
...

. . .
...

−an1 −an2 · · · 1− ann

 ·

m1

m2

...
mn

 = 0.

(b) Prove that det(I −A) ∈ AnnR(M) and det(I −A) = 1 + a for some a ∈ J .
(c) (Nakayama’s lemma) Suppose M is a faithful finitely generated R-module, J is an ideal of R,

and JM = M . Prove that J = R.
(d) Suppose M is a finitely generated R-module and for every maximal ideal m of R, mM = M .

Prove that M = 0.
2. Suppose R has only one maximal ideal m, and M is a finitely generated R-module.

(a) Prove that M/mM is a finite dimensional vector space over R/m with respect to the following
scalar multiplication (r + m) · (m+ mM) := r ·m+ mM .

(b) Prove that the minimum number of elements needed to generate M is equal to dimR/m(M/mM).

15.2. misc.

1. (Game of Chomps) Suppose there are cookies on the lattice points in the first quarter of the plane;
that means {(m,n) ∈ Z2 | m,n ≥ 0}. Two players are playing the following game: at players’ turn
they choose a square (m,n) and eat all the cookies that are located at (m′, n′) where either m′ ≥ m
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or n′ ≥ n. The cookie at (0, 0) is poisoned, and the player who eats it immediately loses. Prove that
any game of Chomp ends after finitely many moves.

2. Suppose A is a unital commutative ring and I is an ideal of A. Let
√
I := {a ∈ A | an ∈ I for some posistive integer n}.

(a) Prove that
√
I is an ideal of A.

(b) Prove that
√
I is the intersection of all the prime ideals of A which contain I.

3. Suppose R is a unital commutative ring and aij ∈ Mn(R). Let S be the subring of Mn(R) which is
generated by R and aij ’s. Suppose S is commutative. Let A := [aij ] and view it both as an element
of Mk(S) and Mnk(R). Show that detR(A) = detR(detS(A)).

16. Discussion and Problem sessions 16

16.1. misc.

1. (Game of Chomps) Suppose there are cookies on the lattice points in the first quarter of the plane;
that means {(m,n) ∈ Z2 | m,n ≥ 0}. Two players are playing the following game: at players’ turn
they choose a square (m,n) and eat all the cookies that are located at (m′, n′) where m′ ≥ m and
n′ ≥ n. The cookie at (0, 0) is poisoned, and the player who eats it immediately loses. Prove that
any game of Chomp ends after finitely many moves.

2. Suppose A is a unital commutative ring and I is an ideal of A. Let
√
I := {a ∈ A | an ∈ I for some posistive integer n}.

(a) Prove that
√
I is an ideal of A.

(b) Prove that
√
I is the intersection of all the prime ideals of A which contain I.

3. Suppose R is a unital commutative ring and aij ∈ Mn(R). Let S be the subring of Mn(R) which is
generated by R and aij ’s. Suppose S is commutative. Let A := [aij ] and view it both as an element
of Mk(S) and Mnk(R). Show that detR(A) = detR(detS(A)).

4. Suppose D is an integral domain and f, g ∈ D[x] \D. Then the resultant r(f, g) = 0 if and only if
they have a common divisor of positive degree.

16.2. Hilbert’s Nullstellensatz. State various forms of Hilbert’s Nullstellensatz.


