QUIZ 4, MATH100C, SPRING 2021

1. Suppose A and B are finite abelian groups and $S^{1}:=\{z \in \mathbb{C}| | z \mid=1\}$. Let $f: A \times B \rightarrow S^{1}$ be a pairing; this means that f is a group homomorphism with respect to each component separately. Let

$$
f_{A}: A \rightarrow \widehat{B},\left(f_{A}(a)\right)(b):=f(a, b), \quad \text { and } \quad f^{B}: B \rightarrow \widehat{A},\left(f^{B}(b)\right)(a):=f(a, b)
$$

where \widehat{A} and \widehat{B} are the duals of A and B, respectively. Suppose f_{A} is a group isomorphism.
(a) (2 points) Suppose $b \in \operatorname{ker} f^{B}$. Prove that $b \in \operatorname{ker} \chi$ for every $\chi \in \widehat{B}$.

Solution. The fact $b \in \operatorname{ker} f^{B}$ means $f^{B}(b)$ is the trivial homomorphism, i.e. $f(a, b)=$ $\left(f^{B}(b)\right)(a)=1$ for any $a \in A$. If $\chi \in \widehat{B}$ because f_{A} is surjective there exists some $a \in A$ such that $\chi=f_{A}(a)$, but then $\chi(b)=\left(f_{A}(a)\right)(b)=f(a, b)=1$, so $b \in \operatorname{ker} \chi$.
(b) (2 points) Prove that f^{B} is injective.

Solution. Suppose $b \in \operatorname{ker} f^{B}$; by (a) we find $b \in \operatorname{ker} \chi$ for all $\chi \in \widehat{B}$, i.e. $\chi(b)=1$. But we've seen in class that if $b \neq 0$ then there exists some $\chi \in \widehat{B}$ such that $\chi(b) \neq 1$, and thus we deduce $b=0$, so f^{B} is injective.
(c) (2 points) Prove that f^{B} is an isomorphism.

Solution. Recall we know from class that $|\widehat{A}|=|A|$ and $|\widehat{B}|=|B|$. From the fact that f_{A} is an isomorphism, we conclude that $|A|=|\widehat{B}|$, and thus $|B|=|\widehat{A}|$, and so the fact that $f^{B}: B \rightarrow \widehat{A}$ is injective implies surjectivity as well.
2. Suppose F is a field of characteristic 0 which contains an element ζ of order n and \bar{F} is an algebraic closure of F. Suppose $E \in \operatorname{Int}(\bar{F} / F), E / F$ is a Galois extension, and $\operatorname{Aut}_{F}(E)$ is a finite abelian group of exponent n. Let

$$
\Delta(E):=\left(\left(E^{\times}\right)^{n} \cap F^{\times}\right) /\left(F^{\times}\right)^{n} .
$$

(a) (2 points) Define the Kummer pairing $f: \operatorname{Aut}_{F}(E) \times \Delta(E) \rightarrow M_{n}$ where $M_{n}:=\left\{1, \zeta, \ldots, \zeta^{n-1}\right\}$. Solution. The Kummer pairing is given by

$$
f(\sigma, \bar{a}):=\frac{\sigma(\alpha)}{\alpha}
$$

for some choice of $\alpha \in E^{\times}$satisfying $a=\alpha^{n}$ (and where our notation \bar{a} means the coset $\left.a\left(F^{\times}\right)^{n}\right)$.
(b) (3 points) Prove the Kummer pairing is well-defined.

Solution. See Lemma 33.2.4 in the notes.
(c) (3 points) Prove that $f^{\Delta(E)}: \Delta(E) \rightarrow \widehat{\operatorname{Aut}_{F}(E)}$ is injective where $f^{\Delta(E)}$ is given as in the first problem.

Solution. See Lemma 34.3.3 in the notes.
(d) (2 points) Prove that $|\Delta(E)| \leq\left|\operatorname{Aut}_{F}(E)\right|$.

Solution. By the previous part one has $|\Delta(E)| \leq\left|\widehat{\operatorname{Aut}_{F}(E)}\right|$, and we know that $\left|\widehat{\operatorname{Aut}_{F}(E)}\right|=$ $\left|\operatorname{Aut}_{F}(E)\right|$, giving us the result.
3. Suppose p is prime and $F:=\mathbb{Q}\left[\zeta_{p}\right]$ where $\zeta_{p}:=e^{\frac{2 \pi i}{p}}$. Suppose $a_{1}, \ldots, a_{n} \in F^{\times}$are such that

$$
\bar{A}:=\left\langle a_{1}\left(F^{\times}\right)^{p}, \ldots, a_{n}\left(F^{\times}\right)^{p}\right\rangle
$$

is a group of order p^{n}. Let $E:=F\left[\sqrt[p]{a_{1}}, \ldots, \sqrt[p]{a_{n}}\right]$ where $\sqrt[p]{a_{i}}$ is a zero of $x^{p}-a_{i}$ in \bar{F}.
(a) (3 points) Let $g: \mathbb{Z}_{p}^{n} \rightarrow \bar{A}, g\left(\left[m_{1}\right]_{p}, \ldots,\left[m_{n}\right]_{p}\right):=\left(\prod_{i=1}^{n} a_{i}^{m_{i}}\right)\left(F^{\times}\right)^{p}$. Prove that g is a welldefined isomorphism.
Solution. To see g is well-defined, suppose $\left(\left[m_{1}\right]_{p}, \ldots,\left[m_{n}\right]_{p}\right)=\left(\left[m_{1}^{\prime}\right]_{p}, \ldots,\left[m_{n}^{\prime}\right]_{p}\right)$ for $m_{i}, m_{i}^{\prime} \in$ \mathbb{Z}; this means that $m_{i} \equiv m_{i}^{\prime}(\bmod p)$. As a result one can write $m_{i}=m_{i}^{\prime}+k_{i} p$ for some $k_{i} \in \mathbb{Z}$, and then

$$
\left(\prod_{i=1}^{n} a_{i}^{m_{i}}\right)\left(F^{\times}\right)^{p}=\left(\prod_{i=1}^{n} a_{i}^{m_{i}^{\prime}+k_{i} p}\right)\left(F^{\times}\right)^{p}=\left(\prod_{i=1}^{n} a_{i}^{m_{i}^{\prime}}\right)\left(\prod_{i=1}^{n} a_{i}^{k_{i} p}\right)\left(F^{\times}\right)^{p}=\left(\prod_{i=1}^{n} a_{i}^{m_{i}^{\prime}}\right)\left(F^{\times}\right)^{p}
$$

where the last equality is because $\prod_{i=1}^{n} a_{i}^{k_{i} p} \in\left(F^{\times}\right)^{p}$. This shows g is well-defined. It is straightforward to verify that g is a homomorphism. For bijectivity, notice the image of g contains each $a_{i}\left(F^{\times}\right)^{p}$ (because this element equals $g\left([0]_{p}, \ldots,[0]_{p},[1]_{p},[0]_{p}, \ldots,[0]_{p}\right)$ with the $[1]_{p}$ in the i-th position), and because these generate the codomain we see g is surjective. Then we notice that the two groups have the same order, so g is an isomorphism.
(b) (3 points) Suppose $K \in \operatorname{Int}(E / F)$ and $[K: F]=p$. Prove that K / F is Galois Aut ${ }_{F}(K) \simeq \mathbb{Z}_{p}$.

Solution. One has by Kummer theory that E / F is Galois (or one can directly see that E is a splitting field of $\prod_{i}\left(x^{p}-a_{i}\right)$ over $\left.F\right)$ and also $\operatorname{Aut}_{F}(E) \simeq \widehat{\Delta(E)}=\widehat{\bar{A}} \simeq \widehat{\mathbb{Z}_{p}^{n}} \simeq \mathbb{Z}_{p}^{n}$. In particular because the automorphism group is abelian one has that K / F is Galois, and thus $\left|\operatorname{Aut}_{F}(K)\right|=[K: F]=p$, which implies $\operatorname{Aut}_{F}(K) \simeq \mathbb{Z}_{p}$.
(c) (2 points) Suppose $K \in \operatorname{Int}(E / F)$ and $[K: F]=p$. Prove that $K=F[\sqrt[p]{a}]$ for some $a \in F$, where $\sqrt[p]{a}$ is a zero of $x^{p}-a$ in \bar{F}.

Solution. This follows immediately from the cyclic case of Kummer theory, i.e. surjectivity of Λ in Theorem 34.2.3; alternatively we proved this as Theorem 31.3.1.
(d) (1 points) Suppose $K \in \operatorname{Int}(E / F)$ and $K=F[\sqrt[p]{a}]$ for some $a \in F$. Prove that $a\left(F^{\times}\right)^{p} \in \Delta(E)$, where $\Delta(E)$ is given by Kummer theory (see problem 2).
Solution. Because $\sqrt[p]{a} \in K \subseteq E$ one has $a=(\sqrt[p]{a})^{p} \in\left(E^{\times}\right)^{p} \cap F^{\times}$, and thus $a\left(F^{\times}\right)^{p} \in$ $\left(\left(E^{\times}\right)^{p} \cap F^{\times}\right) /\left(F^{\times}\right)^{p}=\Delta(E)$.
(e) (2 points) Suppose $K \in \operatorname{Int}(E / F)$ and $[K: F]=p$. Prove that $K=F[\sqrt[p]{a}]$ for some $a\left(F^{\times}\right)^{p} \in \bar{A}$ that has order p.
Solution. One knows from the cyclic case of Kummer theory that $\Delta(K)$ is cyclic, i.e. $\Delta(K)=$ $\left\langle a\left(F^{\times}\right)^{p}\right\rangle$ for some $a \in F^{\times}$. But because $\Lambda \circ \Delta=$ id one has $K=\Lambda(\Delta(K))=\Lambda\left(\left\langle a\left(F^{\times}\right)^{p}\right\rangle\right)=$ $F[\sqrt[p]{a}]$, and in addition $\operatorname{Aut}_{F}(K) \simeq\left\langle a\left(F^{\times}\right)^{p}\right\rangle$, which implies that $a\left(F^{\times}\right)^{p}$ has order p (since $\left|\operatorname{Aut}_{F}(K)\right|=p$ by part (b)) which gives the result.
(f) (2 points) Prove that there is a bijection between $\{K \in \operatorname{Int}(E / F) \mid[K: F]=p\}$ and onedimensional subspaces of \mathbb{Z}_{p}^{n}.
Solution. One-dimensional subspaces of \mathbb{Z}_{p}^{n} are the same as subgroups of order p, and then so we see using (a) it suffices to give a bijection between $\{K \in \operatorname{Int}(E / F) \mid[K: F]=p\}$ and subgroups of \bar{A} of order p. On one hand if $[K: F]=p$ then we have seen that $K=F[\sqrt[p]{a}]$ for some $a \in F^{\times}$with $a\left(F^{\times}\right)^{p}$ order p in $\Delta(E)=\bar{A}$. But this means that $\Delta(K)=\left\langle a\left(F^{\times}\right)^{p}\right\rangle$ is a subgroup of \bar{A} of order p; conversely, if $H=\left\langle a\left(F^{\times}\right)^{p}\right\rangle$ is a subgroup of \bar{A} of order p then $\Lambda(H)=F[\sqrt[p]{a}]$ is an intermediate field of E / F with degree p over F. In particular we see that Λ and Δ (restricted to the proper domains) give the inverse functions we need.
(g) (1 points) Prove that $|\{K \in \operatorname{Int}(E / F) \mid[K: F]=p\}|=\frac{p^{n}-1}{p-1}$.

Solution. By (f) we can count one-dimensional linear subspaces of \mathbb{Z}_{p}^{n}; any such subspace is generated by a nonzero element, and conversely any nonzero element of \mathbb{Z}_{p}^{n} spans such a subspace; this gives $p^{n}-1$ potential generating elements. In addition, two (nonzero) elements will generate the same subspace if and only if they are equal up to multiplication by an element of \mathbb{Z}_{p}^{\times}, of which there are $p-1$ elements, so this leads to the total number $\frac{p^{n}-1}{p-1}$ of one-dimensional subspaces.

