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1. Suppose A and B are finite abelian groups and S1 := {z ∈ C | |z| = 1}. Let f : A × B → S1 be
a pairing; this means that f is a group homomorphism with respect to each component separately.
Let

fA : A→ B̂, (fA(a))(b) := f(a, b), and fB : B → Â, (fB(b))(a) := f(a, b),

where Â and B̂ are the duals of A and B, respectively. Suppose fA is a group isomorphism.

(a) (2 points) Suppose b ∈ ker fB . Prove that b ∈ kerχ for every χ ∈ B̂.

Solution. The fact b ∈ ker fB means fB(b) is the trivial homomorphism, i.e. f(a, b) =

(fB(b))(a) = 1 for any a ∈ A. If χ ∈ B̂ because fA is surjective there exists some a ∈ A
such that χ = fA(a), but then χ(b) = (fA(a))(b) = f(a, b) = 1, so b ∈ kerχ.

(b) (2 points) Prove that fB is injective.

Solution. Suppose b ∈ ker fB ; by (a) we find b ∈ kerχ for all χ ∈ B̂, i.e. χ(b) = 1. But we’ve

seen in class that if b 6= 0 then there exists some χ ∈ B̂ such that χ(b) 6= 1, and thus we deduce
b = 0, so fB is injective.

(c) (2 points) Prove that fB is an isomorphism.

Solution. Recall we know from class that |Â| = |A| and |B̂| = |B|. From the fact that fA is an

isomorphism, we conclude that |A| = |B̂|, and thus |B| = |Â|, and so the fact that fB : B → Â
is injective implies surjectivity as well.

2. Suppose F is a field of characteristic 0 which contains an element ζ of order n and F is an algebraic
closure of F . Suppose E ∈ Int(F/F ), E/F is a Galois extension, and AutF (E) is a finite abelian
group of exponent n. Let

∆(E) := ((E×)n ∩ F×)/(F×)n.

(a) (2 points) Define the Kummer pairing f : AutF (E)×∆(E)→Mn where Mn := {1, ζ, . . . , ζn−1}.

Solution. The Kummer pairing is given by

f(σ, a) :=
σ(α)

α

for some choice of α ∈ E× satisfying a = αn (and where our notation a means the coset a(F×)n).

(b) (3 points) Prove the Kummer pairing is well-defined.

Solution. See Lemma 33.2.4 in the notes.

(c) (3 points) Prove that f∆(E) : ∆(E)→ ̂AutF (E) is injective where f∆(E) is given as in the first
problem.

Solution. See Lemma 34.3.3 in the notes.

(d) (2 points) Prove that |∆(E)| ≤ |AutF (E)|.

Solution. By the previous part one has |∆(E)| ≤ | ̂AutF (E)|, and we know that | ̂AutF (E)| =
|AutF (E)|, giving us the result.
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3. Suppose p is prime and F := Q[ζp] where ζp := e
2πi
p . Suppose a1, . . . , an ∈ F× are such that

A := 〈a1(F×)p, . . . , an(F×)p〉
is a group of order pn. Let E := F [ p

√
a1, . . . , p

√
an] where p

√
ai is a zero of xp − ai in F .

(a) (3 points) Let g : Zn
p → A, g([m1]p, . . . , [mn]p) := (

∏n
i=1 a

mi
i )(F×)p. Prove that g is a well-

defined isomorphism.

Solution. To see g is well-defined, suppose ([m1]p, . . . , [mn]p) = ([m′1]p, . . . , [m
′
n]p) for mi,m

′
i ∈

Z; this means that mi ≡ m′i (mod p). As a result one can write mi = m′i +kip for some ki ∈ Z,
and then

(

n∏
i=1

ami
i )(F×)p = (

n∏
i=1

a
m′
i+kip

i )(F×)p = (

n∏
i=1

a
m′
i

i )(

n∏
i=1

akipi )(F×)p = (

n∏
i=1

a
m′
i

i )(F×)p,

where the last equality is because
∏n

i=1 a
kip
i ∈ (F×)p. This shows g is well-defined. It is

straightforward to verify that g is a homomorphism. For bijectivity, notice the image of g
contains each ai(F

×)p (because this element equals g([0]p, . . . , [0]p, [1]p, [0]p, . . . , [0]p) with the
[1]p in the i-th position), and because these generate the codomain we see g is surjective. Then
we notice that the two groups have the same order, so g is an isomorphism.

(b) (3 points) Suppose K ∈ Int(E/F ) and [K : F ] = p. Prove that K/F is Galois AutF (K) ' Zp.

Solution. One has by Kummer theory that E/F is Galois (or one can directly see that E

is a splitting field of
∏

i(x
p − ai) over F ) and also AutF (E) ' ∆̂(E) = Â ' Ẑn

p ' Zn
p . In

particular because the automorphism group is abelian one has that K/F is Galois, and thus
|AutF (K)| = [K : F ] = p, which implies AutF (K) ' Zp.

(c) (2 points) Suppose K ∈ Int(E/F ) and [K : F ] = p. Prove that K = F [ p
√
a] for some a ∈ F ,

where p
√
a is a zero of xp − a in F .

Solution. This follows immediately from the cyclic case of Kummer theory, i.e. surjectivity of
Λ in Theorem 34.2.3; alternatively we proved this as Theorem 31.3.1.

(d) (1 points) Suppose K ∈ Int(E/F ) and K = F [ p
√
a] for some a ∈ F . Prove that a(F×)p ∈ ∆(E),

where ∆(E) is given by Kummer theory (see problem 2).

Solution. Because p
√
a ∈ K ⊆ E one has a = ( p

√
a)p ∈ (E×)p ∩ F×, and thus a(F×)p ∈

((E×)p ∩ F×)/(F×)p = ∆(E).

(e) (2 points) Suppose K ∈ Int(E/F ) and [K : F ] = p. Prove that K = F [ p
√
a] for some a(F×)p ∈ A

that has order p.

Solution. One knows from the cyclic case of Kummer theory that ∆(K) is cyclic, i.e. ∆(K) =
〈a(F×)p〉 for some a ∈ F×. But because Λ ◦∆ = id one has K = Λ(∆(K)) = Λ(〈a(F×)p〉) =
F [ p
√
a], and in addition AutF (K) ' 〈a(F×)p〉, which implies that a(F×)p has order p (since

|AutF (K)| = p by part (b)) which gives the result.

(f) (2 points) Prove that there is a bijection between {K ∈ Int(E/F ) | [K : F ] = p} and one-
dimensional subspaces of Zn

p .

Solution. One-dimensional subspaces of Zn
p are the same as subgroups of order p, and then

so we see using (a) it suffices to give a bijection between {K ∈ Int(E/F ) | [K : F ] = p} and
subgroups of A of order p. On one hand if [K : F ] = p then we have seen that K = F [ p

√
a]

for some a ∈ F× with a(F×)p order p in ∆(E) = A. But this means that ∆(K) = 〈a(F×)p〉
is a subgroup of A of order p; conversely, if H = 〈a(F×)p〉 is a subgroup of A of order p then
Λ(H) = F [ p

√
a] is an intermediate field of E/F with degree p over F . In particular we see that

Λ and ∆ (restricted to the proper domains) give the inverse functions we need.
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(g) (1 points) Prove that |{K ∈ Int(E/F ) | [K : F ] = p}| = pn−1
p−1 .

Solution. By (f) we can count one-dimensional linear subspaces of Zn
p ; any such subspace

is generated by a nonzero element, and conversely any nonzero element of Zn
p spans such a

subspace; this gives pn − 1 potential generating elements. In addition, two (nonzero) elements
will generate the same subspace if and only if they are equal up to multiplication by an element of

Z×p , of which there are p−1 elements, so this leads to the total number pn−1
p−1 of one-dimensional

subspaces.


