QUIZ 3, MATH100C, SPRING 2021

1. (5 points) Suppose F is a field, \overline{F} is an algebraic closure of F, and $\alpha \in \overline{F}$. Suppose $F[\alpha]/F$ is a Galois extension and $[F[\alpha]:F]=p$ where p is a prime. Prove that $L[\alpha]/L$ is Galois and $[L[\alpha]:L]$ is either 1 or p, for every $L \in \operatorname{Int}(\overline{F}/F)$.

Outline of solution. One can directly verify that if $F[\alpha]$ is a splitting field of $f \in F[x] \setminus F$ over F then $L[\alpha]$ is a splitting field of f over L (in fact one can take $f = m_{\alpha,F}$). Because f being separable in F[x] implies being separable in L[x], we see $L[\alpha]/L$ is Galois. For the second statement, notice one has a restriction homomorphism $\operatorname{Aut}_L(L[\alpha]) \to \operatorname{Aut}_F(F[\alpha])$, which is easily verified to be injective. From this one finds by Lagrange's theorem that $[L[\alpha]:L]$ divides $[F[\alpha]:F]=p$, which gives the result.

- 2. Let $\overline{\mathbb{Q}} := \{ \alpha \in \mathbb{C} \mid \alpha \text{ is algebraic over } \mathbb{Q} \}.$
 - (a) (3 points) Prove that $\overline{\mathbb{Q}}$ is algebraically closed.

Solution. Suppose $f(x) \in \overline{\mathbb{Q}}[x] \setminus \mathbb{Q}$. Then $f(x) \in \mathbb{C}[x] \setminus \mathbb{C}$ so because \mathbb{C} is algebraically closed there exists some $\alpha \in \mathbb{C}$ which is a zero of f. We claim $\alpha \in \overline{\mathbb{Q}}$: one needs to see that α is algebraic over \mathbb{Q} . By construction α is algebraic over $\overline{\mathbb{Q}}$, so $\overline{\mathbb{Q}}[\alpha]/\overline{\mathbb{Q}}$ is algebraic, and $\overline{\mathbb{Q}}/\mathbb{Q}$ is algebraic by construction, so $\overline{\mathbb{Q}}[\alpha]/\mathbb{Q}$ is an algebraic extension, and thus α is algebraic over \mathbb{Q} as desired.

(b) (5 points) Suppose $\alpha_0 \in \overline{\mathbb{Q}} \setminus \mathbb{Q}$ and let $\Sigma_{\alpha_0} = \{E \in \operatorname{Int}(\overline{\mathbb{Q}}/\mathbb{Q}) \mid \alpha_0 \notin E\}$. Prove that Σ_{α_0} has a maximal element F with respect to inclusion.

Outline of solution. One should invoke Zorn's lemma: Σ_{α_0} is a poset with respect to inclusion (important subtle detail: Σ_{α_0} is nonempty because $\alpha_0 \notin \mathbb{Q}$), and if \mathscr{C} is a chain in Σ_{α_0} then it is straightforward to verify that $L := \bigcup_{E \in \mathscr{C}} E$ is inside Σ_{α_0} and is an upper bound for \mathscr{C} . Thus the conditions of Zorn's lemma are satisfied and the conclusion follows.

(c) (5 points) Suppose $F \in \Sigma_{\alpha_0}$ is a maximal element, and $E \in \operatorname{Int}(\overline{\mathbb{Q}}/F)$ and E/F is a finite Galois extension. Prove that $\operatorname{Aut}_F(E)$ is cyclic.

Solution. By the maximality of F, if $K \in \text{Int}(E/F)$ is not equal to F, then $K \notin \Sigma_{\alpha_0}$ which means $\alpha_0 \in K$. Suppose that $\text{Aut}_F(E)$ is not cyclic; then for every $\sigma \in \text{Aut}_F(E)$ one has $\langle \sigma \rangle \neq \text{Aut}_F(E)$, which implies by the fundamental theorem of Galois theory that $\text{Fix}(\sigma) \neq F$, which by our remarks above implies $\alpha_0 \in \text{Fix}(\sigma)$. But then $\sigma(\alpha_0) = \alpha_0$, and because $\sigma \in \text{Aut}_F(E)$ was arbitrary and E/F is Galois we conclude $\alpha_0 \in F$, which is a contradiction.

3. (4 points) Suppose $\overline{\mathbb{Q}}$ is an algebraic closure of \mathbb{Q} . Suppose $\sigma \in \operatorname{Aut}_{\mathbb{Q}}(\overline{\mathbb{Q}})$ and let $F := \operatorname{Fix}(\langle \sigma \rangle)$. Suppose $E \in \operatorname{Int}(\overline{\mathbb{Q}}/F)$ and E/F is a finite Galois extension. Prove that $\operatorname{Aut}_F(E) = \langle \sigma|_E \rangle$.

Notice $\langle \sigma |_E \rangle \subseteq \operatorname{Aut}_F(E)$. To show equality notice that

$$F \subseteq \operatorname{Fix}(\langle \sigma |_E \rangle) \subseteq \operatorname{Fix}(\langle \sigma \rangle) = F,$$

1

thus $F = \text{Fix}(\langle \sigma|_E \rangle)$. As a result one has $\text{Aut}_F(E) = \text{Aut}_{\text{Fix}(\langle \sigma|_E \rangle)}(E) = \langle \sigma|_E \rangle$.

- 4. Suppose $\zeta_n := e^{\frac{2\pi i}{n}} \in \mathbb{C}$ and $K_n := \mathbb{Q}[\zeta_n] \cap \mathbb{R}$.
 - (a) (4 points) Prove that K_n/\mathbb{Q} is a Galois extension and $[K_n:\mathbb{Q}] = \frac{\phi(n)}{2}$ where $\phi(n)$ is the Euler ϕ -function.

Solution. Recall $\mathbb{Q}[\zeta_n]/\mathbb{Q}$ is Galois with $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}[\zeta_n])$ cyclic. Thus $\operatorname{Aut}_{K_n}(\mathbb{Q}[\zeta_n])$ is automatically normal in $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}[\zeta_n])$ and we deduce from the fundamental theorem of Galois theory that K_n/\mathbb{Q} is Galois. Also notice that $\zeta_n+\zeta_n^{-1}\in K_n$ (for instance it is fixed by complex conjugation), and ζ_n satisfies the polynomial $x^2+(\zeta_n-\zeta_n^{-1})x+1\in K_n[x]$, so from this one deduces $[\mathbb{Q}[\zeta_n]:K_n]=\deg(m_{\zeta_n,K_n})\leq 2$. On the other hand $\zeta_n\notin K_n$ (because $\zeta_n\notin \mathbb{R}$) so one deduces equality $[\mathbb{Q}[\zeta_n]:K_n]=2$. From tower law one gets the desired equality $[K_n:\mathbb{Q}]=\frac{[\mathbb{Q}[\zeta_n]:\mathbb{Q}]}{2}=\frac{\phi(n)}{2}$.

- (b) (2 points) Prove that for every $\alpha \in K_n$ all the complex zeros of $m_{\alpha,\mathbb{Q}}$ are in \mathbb{R} . Solution. Because K_n/\mathbb{Q} is Galois (in particular normal) one sees that $m_{\alpha,\mathbb{Q}}$ splits into linear factors in K_n , hence all complex zeros of $m_{\alpha,\mathbb{Q}}$ are in K_n , hence in \mathbb{R} .
- (c) (2 points) Suppose $\alpha \in K_n^{\times}$ and $\alpha^m \in \mathbb{Q}$ for some positive integer m. Prove that $\alpha^2 \in \mathbb{Q}$. Solution. If $\alpha^m \in \mathbb{Q}$ then one has $m_{\alpha,\mathbb{Q}}(x)|x^m - \alpha^m$ in $\mathbb{Q}[x]$. By part (b) $m_{\alpha,\mathbb{Q}}$ has all complex zeros in \mathbb{R} , but the complex zeros of $x^m - \alpha^m$ are exactly $\alpha, \zeta_m \alpha, \zeta_m^2 \alpha, \ldots, \zeta_m^{m-1} \alpha$. Thus the set of roots of $m_{\alpha,\mathbb{Q}}$ in \mathbb{C} is either $\{\alpha\}$ or $\{\alpha, \zeta_m^{m/2} \alpha\}$ (the latter only being a possibility when m is even), i.e. either $m_{\alpha,\mathbb{Q}}(x) = x - \alpha$ or $m_{\alpha,\mathbb{Q}}(x) = (x - \alpha)(x + \alpha)$. In the former case one has $\alpha \in \mathbb{Q}$, and in the latter case one has $\alpha^2 \in \mathbb{Q}$.