QUIZ 3, MATH100C, SPRING 2021

1. (5 points) Suppose F is a field, \bar{F} is an algebraic closure of F, and $\alpha \in \bar{F}$. Suppose $F[\alpha] / F$ is a Galois extension and $[F[\alpha]: F]=p$ where p is a prime. Prove that $L[\alpha] / L$ is Galois and $[L[\alpha]: L]$ is either 1 or p, for every $L \in \operatorname{Int}(\bar{F} / F)$.

Outline of solution. One can directly verify that if $F[\alpha]$ is a splitting field of $f \in F[x] \backslash F$ over F then $L[\alpha]$ is a splitting field of f over L (in fact one can take $f=m_{\alpha, F}$). Because f being separable in $F[x]$ implies being separable in $L[x]$, we see $L[\alpha] / L$ is Galois. For the second statement, notice one has a restriction homomorphism $\operatorname{Aut}_{L}(L[\alpha]) \rightarrow \operatorname{Aut}_{F}(F[\alpha])$, which is easily verified to be injective. From this one finds by Lagrange's theorem that $[L[\alpha]: L]$ divides $[F[\alpha]: F]=p$, which gives the result.
2. Let $\overline{\mathbb{Q}}:=\{\alpha \in \mathbb{C} \mid \alpha$ is algebraic over $\mathbb{Q}\}$.
(a) (3 points) Prove that $\overline{\mathbb{Q}}$ is algebraically closed.

Solution. Suppose $f(x) \in \overline{\mathbb{Q}}[x] \backslash \mathbb{Q}$. Then $f(x) \in \mathbb{C}[x] \backslash \mathbb{C}$ so because \mathbb{C} is algebraically closed there exists some $\alpha \in \mathbb{C}$ which is a zero of f. We claim $\alpha \in \overline{\mathbb{Q}}$: one needs to see that α is algebraic over \mathbb{Q}. By construction α is algebraic over $\overline{\mathbb{Q}}$, so $\overline{\mathbb{Q}}[\alpha] / \overline{\mathbb{Q}}$ is algebraic, and $\overline{\mathbb{Q}} / \mathbb{Q}$ is algerbaic by construction, so $\overline{\mathbb{Q}}[\alpha] / \mathbb{Q}$ is an algerbaic extension, and thus α is algebraic over \mathbb{Q} as desired.
(b) (5 points) Suppose $\alpha_{0} \in \overline{\mathbb{Q}} \backslash \mathbb{Q}$ and let $\Sigma_{\alpha_{0}}=\left\{E \in \operatorname{Int}(\overline{\mathbb{Q}} / \mathbb{Q}) \mid \alpha_{0} \notin E\right\}$. Prove that $\Sigma_{\alpha_{0}}$ has a maximal element F with respect to inclusion.

Outline of solution. One should invoke Zorn's lemma: $\Sigma_{\alpha_{0}}$ is a poset with respect to inclusion (important subtle detail: $\Sigma_{\alpha_{0}}$ is nonempty because $\alpha_{0} \notin \mathbb{Q}$), and if \mathscr{C} is a chain in $\Sigma_{\alpha_{0}}$ then it is straightforward to verify that $L:=\bigcup_{E \in \mathscr{C}} E$ is inside $\Sigma_{\alpha_{0}}$ and is an upper bound for \mathscr{C}. Thus the conditions of Zorn's lemma are satisfied and the conclusion follows.
(c) (5 points) Suppose $F \in \Sigma_{\alpha_{0}}$ is a maximal element, and $E \in \operatorname{Int}(\overline{\mathbb{Q}} / F)$ and E / F is a finite Galois extension. Prove that $\operatorname{Aut}_{F}(E)$ is cyclic.
Solution. By the maximality of F, if $K \in \operatorname{Int}(E / F)$ is not equal to F, then $K \notin \Sigma_{\alpha_{0}}$ which means $\alpha_{0} \in K$. Suppose that $\operatorname{Aut}_{F}(E)$ is not cyclic; then for every $\sigma \in \operatorname{Aut}_{F}(E)$ one has $\langle\sigma\rangle \neq$ $\operatorname{Aut}_{F}(E)$, which implies by the fundamental theorem of Galois theory that $\operatorname{Fix}(\sigma) \neq F$, which by our remarks above implies $\alpha_{0} \in \operatorname{Fix}(\sigma)$. But then $\sigma\left(\alpha_{0}\right)=\alpha_{0}$, and because $\sigma \in \operatorname{Aut}_{F}(E)$ was arbitrary and E / F is Galois we conclude $\alpha_{0} \in F$, which is a contradiction.
3. (4 points) Suppose $\overline{\mathbb{Q}}$ is an algebraic closure of \mathbb{Q}. Suppose $\sigma \in \operatorname{Aut}_{\mathbb{Q}}(\overline{\mathbb{Q}})$ and let $F:=\operatorname{Fix}(\langle\sigma\rangle)$. Suppose $E \in \operatorname{Int}(\overline{\mathbb{Q}} / F)$ and E / F is a finite Galois extension. Prove that $\operatorname{Aut}_{F}(E)=\left\langle\left.\sigma\right|_{E}\right\rangle$.

Notice $\left\langle\left.\sigma\right|_{E}\right\rangle \subseteq \operatorname{Aut}_{F}(E)$. To show equality notice that

$$
F \subseteq \operatorname{Fix}\left(\left\langle\left.\sigma\right|_{E}\right\rangle\right) \subseteq \operatorname{Fix}(\langle\sigma\rangle)=F
$$

thus $F=\operatorname{Fix}\left(\left\langle\left.\sigma\right|_{E}\right\rangle\right)$. As a result one has $\operatorname{Aut}_{F}(E)=\operatorname{Aut}_{\operatorname{Fix}\left(\left\langle\left.\sigma\right|_{E}\right\rangle\right)}(E)=\left\langle\left.\sigma\right|_{E}\right\rangle$.
4. Suppose $\zeta_{n}:=e^{\frac{2 \pi i}{n}} \in \mathbb{C}$ and $K_{n}:=\mathbb{Q}\left[\zeta_{n}\right] \cap \mathbb{R}$.
(a) (4 points) Prove that K_{n} / \mathbb{Q} is a Galois extension and $\left[K_{n}: \mathbb{Q}\right]=\frac{\phi(n)}{2}$ where $\phi(n)$ is the Euler ϕ-function.

Solution. Recall $\mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q}$ is Galois with Aut $\left(\mathbb{Q}\left[\zeta_{n}\right]\right)$ cyclic. Thus Aut $K_{n}\left(\mathbb{Q}\left[\zeta_{n}\right]\right)$ is automatically normal in $\operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{n}\right]\right)$ and we deduce from the fundamental theorem of Galois theory that K_{n} / \mathbb{Q} is Galois. Also notice that $\zeta_{n}+\zeta_{n}^{-1} \in K_{n}$ (for instance it is fixed by complex conjugation), and ζ_{n} satisfies the polynomial $x^{2}+\left(\zeta_{n}-\zeta_{n}^{-1}\right) x+1 \in K_{n}[x]$, so from this one deduces $\left[\mathbb{Q}\left[\zeta_{n}\right]\right.$: $\left.K_{n}\right]=\operatorname{deg}\left(m_{\zeta_{n}, K_{n}}\right) \leq 2$. On the other hand $\zeta_{n} \notin K_{n}$ (because $\zeta_{n} \notin \mathbb{R}$) so one deduces equality $\left[\mathbb{Q}\left[\zeta_{n}\right]: K_{n}\right]=2$. From tower law one gets the desired equality $\left[K_{n}: \mathbb{Q}\right]=\frac{\left[\mathbb{Q}\left[\zeta_{n}\right]: \mathbb{Q}\right]}{2}=\frac{\phi(n)}{2}$.
(b) (2 points) Prove that for every $\alpha \in K_{n}$ all the complex zeros of $m_{\alpha, \mathbb{Q}}$ are in \mathbb{R}.

Solution. Because K_{n} / \mathbb{Q} is Galois (in particular normal) one sees that $m_{\alpha, \mathbb{Q}}$ splits into linear factors in K_{n}, hence all complex zeros of $m_{\alpha, \mathbb{Q}}$ are in K_{n}, hence in \mathbb{R}.
(c) (2 points) Suppose $\alpha \in K_{n}^{\times}$and $\alpha^{m} \in \mathbb{Q}$ for some positive integer m. Prove that $\alpha^{2} \in \mathbb{Q}$.

Solution. If $\alpha^{m} \in \mathbb{Q}$ then one has $m_{\alpha, \mathbb{Q}}(x) \mid x^{m}-\alpha^{m}$ in $\mathbb{Q}[x]$. By part (b) $m_{\alpha, \mathbb{Q}}$ has all complex zeros in \mathbb{R}, but the complex zeros of $x^{m}-\alpha^{m}$ are exactly $\alpha, \zeta_{m} \alpha, \zeta_{m}^{2} \alpha, \ldots, \zeta_{m}^{m-1} \alpha$. Thus the set of roots of $m_{\alpha, \mathbb{Q}}$ in \mathbb{C} is either $\{\alpha\}$ or $\left\{\alpha, \zeta_{m}^{m / 2} \alpha\right\}$ (the latter only being a possibility when m is even), i.e. either $m_{\alpha, \mathbb{Q}}(x)=x-\alpha$ or $m_{\alpha, \mathbb{Q}}(x)=(x-\alpha)(x+\alpha)$. In the former case one has $\alpha \in \mathbb{Q}$, and in the latter case one has $\alpha^{2} \in \mathbb{Q}$.

