
QUIZ 3, MATH100C, SPRING 2021

1. (5 points) Suppose F is a field, F is an algebraic closure of F , and α ∈ F . Suppose F [α]/F is a
Galois extension and [F [α] : F ] = p where p is a prime. Prove that L[α]/L is Galois and [L[α] : L]
is either 1 or p, for every L ∈ Int(F/F ).

Outline of solution. One can directly verify that if F [α] is a splitting field of f ∈ F [x] \ F over F
then L[α] is a splitting field of f over L (in fact one can take f = mα,F ). Because f being separable
in F [x] implies being separable in L[x], we see L[α]/L is Galois. For the second statement, notice one
has a restriction homomorphism AutL(L[α])→ AutF (F [α]), which is easily verified to be injective.
From this one finds by Lagrange’s theorem that [L[α] : L] divides [F [α] : F ] = p, which gives the
result.

2. Let Q := {α ∈ C | α is algebraic over Q}.
(a) (3 points) Prove that Q is algebraically closed.

Solution. Suppose f(x) ∈ Q[x] \ Q. Then f(x) ∈ C[x] \ C so because C is algebraically closed
there exists some α ∈ C which is a zero of f . We claim α ∈ Q: one needs to see that α is
algebraic over Q. By construction α is algebraic over Q, so Q[α]/Q is algebraic, and Q/Q is
algerbaic by construction, so Q[α]/Q is an algerbaic extension, and thus α is algebraic over Q
as desired.

(b) (5 points) Suppose α0 ∈ Q \Q and let Σα0
= {E ∈ Int(Q/Q) | α0 /∈ E}. Prove that Σα0

has a
maximal element F with respect to inclusion.

Outline of solution. One should invoke Zorn’s lemma: Σα0 is a poset with respect to inclusion
(important subtle detail: Σα0 is nonempty because α0 /∈ Q), and if C is a chain in Σα0 then it
is straightforward to verify that L :=

⋃
E∈C E is inside Σα0

and is an upper bound for C . Thus
the conditions of Zorn’s lemma are satisfied and the conclusion follows.

(c) (5 points) Suppose F ∈ Σα0 is a maximal element, and E ∈ Int(Q/F ) and E/F is a finite Galois
extension. Prove that AutF (E) is cyclic.

Solution. By the maximality of F , if K ∈ Int(E/F ) is not equal to F , then K /∈ Σα0
which

means α0 ∈ K. Suppose that AutF (E) is not cyclic; then for every σ ∈ AutF (E) one has 〈σ〉 6=
AutF (E), which implies by the fundamental theorem of Galois theory that Fix(σ) 6= F , which
by our remarks above implies α0 ∈ Fix(σ). But then σ(α0) = α0, and because σ ∈ AutF (E)
was arbitrary and E/F is Galois we conclude α0 ∈ F , which is a contradiction.

3. (4 points) Suppose Q is an algebraic closure of Q. Suppose σ ∈ AutQ(Q) and let F := Fix(〈σ〉).
Suppose E ∈ Int(Q/F ) and E/F is a finite Galois extension. Prove that AutF (E) = 〈σ|E〉.

Notice 〈σ|E〉 ⊆ AutF (E). To show equality notice that

F ⊆ Fix(〈σ|E〉) ⊆ Fix(〈σ〉) = F,

thus F = Fix(〈σ|E〉). As a result one has AutF (E) = AutFix(〈σ|E〉)(E) = 〈σ|E〉.

4. Suppose ζn := e
2πi
n ∈ C and Kn := Q[ζn] ∩ R.

(a) (4 points) Prove that Kn/Q is a Galois extension and [Kn : Q] = φ(n)
2 where φ(n) is the Euler

φ-function.
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Solution. Recall Q[ζn]/Q is Galois with AutQ(Q[ζn]) cyclic. Thus AutKn(Q[ζn]) is automatically
normal in AutQ(Q[ζn]) and we deduce from the fundamental theorem of Galois theory that
Kn/Q is Galois. Also notice that ζn+ζ−1n ∈ Kn (for instance it is fixed by complex conjugation),
and ζn satisfies the polynomial x2 + (ζn − ζ−1n )x+ 1 ∈ Kn[x], so from this one deduces [Q[ζn] :
Kn] = deg(mζn,Kn) ≤ 2. On the other hand ζn /∈ Kn (because ζn /∈ R) so one deduces equality

[Q[ζn] : Kn] = 2. From tower law one gets the desired equality [Kn : Q] = [Q[ζn]:Q]
2 = φ(n)

2 .

(b) (2 points) Prove that for every α ∈ Kn all the complex zeros of mα,Q are in R.

Solution. Because Kn/Q is Galois (in particular normal) one sees that mα,Q splits into linear
factors in Kn, hence all complex zeros of mα,Q are in Kn, hence in R.

(c) (2 points) Suppose α ∈ K×n and αm ∈ Q for some positive integer m. Prove that α2 ∈ Q.

Solution. If αm ∈ Q then one has mα,Q(x)|xm − αm in Q[x]. By part (b) mα,Q has all complex
zeros in R, but the complex zeros of xm − αm are exactly α, ζmα, ζ

2
mα, . . . , ζ

m−1
m α. Thus the

set of roots of mα,Q in C is either {α} or {α, ζm/2m α} (the latter only being a possibility when
m is even), i.e. either mα,Q(x) = x − α or mα,Q(x) = (x − α)(x + α). In the former case one
has α ∈ Q, and in the latter case one has α2 ∈ Q.


