QUIZ 2, MATH100C, SPRING 2021

For questions 3 and 4 you can use the following theorem from group theory:

Suppose p is prime and G is a subgroup of S_p which acts transitively on $\{1, \ldots, p\}$; that means for every $1 \leq i, j \leq p$ there is $\sigma \in G$ such that $\sigma(i) = j$. Then G is solvable if and only if every non-trivial element of G fixes at most one point; that means if $\sigma \in G$, $\sigma(i) = i$, and $\sigma(j) = j$ for distinct values i and j, then $\sigma = id$.

- 1. Suppose F is a field of characteristic p > 0. Suppose E/F is a purely inseparable extension and L/E is an algebraic extension. Suppose $\alpha \in L$.
 - (a) (1 point) Prove that $m_{\alpha,E}$ divides $m_{\alpha,F}$ in E[x].
 - (b) (2 points) Prove that for some integer power q of p, we have $m_{\alpha,E}^q \in F[x]$.
 - (c) (1 point) Prove that for some integer power q of p, $m_{\alpha,F}$ divides $m_{\alpha,E}^q$ in E[x].
 - (d) (4 points) Prove that if $m_{\alpha,F}$ is separable in F[x], then $[F[\alpha]:F] = [E[\alpha]:E]$.
- 2. Suppose F is a field of characteristic zero and $f \in F[x]$ is a monic irreducible polynomial. Let E be a splitting field of f over F. Suppose $f(x) = \prod_{i=1}^{n} (x \alpha_i)$ in E[x]. Let $G := \operatorname{Aut}_F(E)$ and $G_i := \operatorname{Aut}_{F[\alpha_i]}(E)$.
 - (a) (3 points) Prove that there is $\sigma_i \in G$ such that $\sigma_i(\alpha_1) = \alpha_i$ for every *i*.
 - (b) (3 points) Prove that $G_i = \sigma_i G_1 \sigma_i^{-1}$ for every *i*.
 - (c) (3 points) Prove that if G is abelian, then $E = F[\alpha_1]$.
- 3. (5 points) Let F be a characteristic zero field. Suppose p is a prime number, and f is a monic irreducible polynomial of degree p in F[x]. Let E be a splitting field of f over F. Suppose f is solvable by radicals over F. Prove that if α and α' are two distinct zeros of f, then $E = F[\alpha, \alpha']$.
- 4. Suppose p is a prime number more than 4, and f(x) = x^p 4x + 2 ∈ Q[x].
 (a) (1 point) Prove that f' has exactly 2 real zeros in C.
 - (b) (2 points) Prove that f has exactly 3 real zeros in \mathbb{C} .
 - (c) (2 points) Prove that f is irreducible in $\mathbb{Q}[x]$.
 - (d) (3 points) Prove that f is not solvable by radicals over \mathbb{Q} .