QUIZ 2, MATH100C, SPRING 2021

For questions 3 and 4 you can use the following theorem from group theory:
Suppose p is prime and G is a subgroup of S_{p} which acts transitively on $\{1, \ldots, p\}$; that means for every $1 \leq i, j \leq p$ there is $\sigma \in G$ such that $\sigma(i)=j$. Then G is solvable if and only if every non-trivial element of G fixes at most one point; that means if $\sigma \in G, \sigma(i)=i$, and $\sigma(j)=j$ for distinct values i and j, then $\sigma=$ id.

1. Suppose F is a field of characteristic $p>0$. Suppose E / F is a purely inseparable extension and L / E is an algebraic extension. Suppose $\alpha \in L$.
(a) (1 point) Prove that $m_{\alpha, E}$ divides $m_{\alpha, F}$ in $E[x]$.
(b) (2 points) Prove that for some integer power q of p, we have $m_{\alpha, E}^{q} \in F[x]$.
(c) (1 point) Prove that for some integer power q of $p, m_{\alpha, F}$ divides $m_{\alpha, E}^{q}$ in $E[x]$.
(d) (4 points) Prove that if $m_{\alpha, F}$ is separable in $F[x]$, then $[F[\alpha]: F]=[E[\alpha]: E]$.
2. Suppose F is a field of characteristic zero and $f \in F[x]$ is a monic irreducible polynomial. Let E be a splitting field of f over F. Suppose $f(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)$ in $E[x]$. Let $G:=\operatorname{Aut}_{F}(E)$ and $G_{i}:=\operatorname{Aut}_{F\left[\alpha_{i}\right]}(E)$.
(a) (3 points) Prove that there is $\sigma_{i} \in G$ such that $\sigma_{i}\left(\alpha_{1}\right)=\alpha_{i}$ for every i.
(b) (3 points) Prove that $G_{i}=\sigma_{i} G_{1} \sigma_{i}^{-1}$ for every i.
(c) (3 points) Prove that if G is abelian, then $E=F\left[\alpha_{1}\right]$.
3. (5 points) Let F be a characteristic zero field. Suppose p is a prime number, and f is a monic irreducible polynomial of degree p in $F[x]$. Let E be a splitting field of f over F. Suppose f is solvable by radicals over F. Prove that if α and α^{\prime} are two distinct zeros of f, then $E=F\left[\alpha, \alpha^{\prime}\right]$.
4. Suppose p is a prime number more than 4 , and $f(x)=x^{p}-4 x+2 \in \mathbb{Q}[x]$.
(a) (1 point) Prove that f^{\prime} has exactly 2 real zeros in \mathbb{C}.
(b) (2 points) Prove that f has exactly 3 real zeros in \mathbb{C}.
(c) (2 points) Prove that f is irreducible in $\mathbb{Q}[x]$.
(d) (3 points) Prove that f is not solvable by radicals over \mathbb{Q}.
