QUIZ 2 SOLUTIONS, MATH100C, SPRING 2021

For questions 3 and 4 you can use the following theorem from group theory:
Suppose p is a prime and G is a subgroup of S_{p} which acts transitively on $\{1, \ldots, p\}$. Then G is solvable if and only if every non-trivial element of G fixes at most one point; that means if $\sigma \in G, \sigma(i)=i$, and $\sigma(j)=j$ for distinct values i and j, then $\sigma=\mathrm{id}$.

1. Suppose F is a field of characteristic $p>0$. Suppose E / F is a purely in separable extension and L / E is an algebraic extension. Suppose $\alpha \in L$.
(a) (1 points) Prove that $m_{\alpha, E}$ divides $m_{\alpha, F}$ in $E[x]$.

Solution. Because $F \subseteq E$ we have $m_{\alpha, F} \in E[x]$, and because $m_{\alpha, F}(\alpha)=0$, we deduce from the defining property of the minimal polynomial that $m_{\alpha, E} \mid m_{\alpha, F}$ in $E[x]$.
(b) (2 points) Prove that for some integer power q of p, we have $m_{\alpha, E}^{q} \in F[x]$.

Solution. Write $m_{\alpha, E}(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+x^{n}$ for $a_{i} \in E$. Because E / F is purely inseparable, for each i we can find some $m_{i} \geq 0$ such that $a_{i}^{p^{m_{i}}} \in F$. Letting $m=\operatorname{lcm}\left(m_{i}\right)$ and letting $q=p^{m}$ we have $a_{i}^{q} \in F$ for each i. But then

$$
m_{\alpha, E}^{q}(x)=\left(a_{0}+\cdots+a_{n-1} x^{n-1}+x^{n}\right)^{q}=a_{0}^{q}+\cdots+a_{n-1}^{q} x^{(n-1) q}+x^{n q} \in F[x] .
$$

(c) (1 points) Prove that for some integer power q of $p, m_{\alpha, F}$ divides $m_{\alpha, E}^{q}$ in $E[x]$.

Solution. Take q as in part (b). Then $m_{\alpha, E}^{q} \in F[x]$ and $m_{\alpha, E}^{q}(\alpha)=0$, so by the defining property of the minimal polynomial we obtain $m_{\alpha, F} \mid m_{\alpha, E}^{q}$ in $E[x]$.
(d) (4 points) Prove that if $m_{\alpha, F}$ is separable in $F[x]$, then $[F[\alpha]: F]=[E[\alpha]: E]$.

Solution. Part (a) tells us that that $m_{\alpha, E}$ is separable in $E[x]$ and that every root of $m_{\alpha, E}$ (taken in some splitting field over L) is also a root of $m_{\alpha, F}$. But part (c) tells us that every root of $m_{\alpha, F}$ is also a root of $m_{\alpha, E}^{q}$, and hence is also a root of $m_{\alpha, E}$. Thus we see that $m_{\alpha, F}$ and $m_{\alpha, E}$ have precisely the same roots in some splitting field, so because they are both separable polynomials in $E[x]$ we find that $m_{\alpha, F}=m_{\alpha, E}$.
2. Suppose F is a field of characteristic zero and $f \in F[x]$ is a monic irreducible polynomial. Let E be a splitting field of f over F. Suppose $f(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)$ in $E[x]$. Let $G:=\operatorname{Aut}_{F}(E)$ and $G_{i}:=\operatorname{Aut}_{F\left[\alpha_{i}\right]}(E)$.
(a) (3 points) Prove that there is $\sigma_{i} \in G$ such that $\sigma_{i}\left(\alpha_{1}\right)=\alpha_{i}$ for every i.

Outline of solution. This follows from the fact that f is irreducible: one can find an F isomorphism $\theta_{i}: F\left[\alpha_{1}\right] \rightarrow F\left[\alpha_{i}\right]$ for any i, and then this can be extended to the splitting field E to get the desired σ_{i}.
(b) (3 points) Prove that $G_{i}=\sigma_{i} G_{1} \sigma_{i}^{-1}$ for every i.

Solution. Notice $\sigma \in G_{i}$ if and only if $\sigma\left(\alpha_{i}\right)=\alpha_{i}$.
On one hand if $\theta \in G_{1}$ then one has $\left(\sigma_{i} \theta \sigma_{i}^{-1}\right)\left(\alpha_{i}\right)=\sigma_{i}\left(\theta\left(\alpha_{1}\right)\right)=\sigma_{i}\left(\alpha_{1}\right)=\alpha_{i}$, so $\sigma_{i} \theta \sigma_{i}^{-1} \in G_{i}$.
Conversely if $\theta \in G_{i}$ then one has $\left(\sigma_{i}^{-1} \theta \sigma_{i}\right)\left(\alpha_{1}\right)=\sigma_{i}^{-1}\left(\theta\left(\alpha_{i}\right)\right)=\sigma_{i}^{-1}\left(\alpha_{i}\right)=\alpha_{1}$, and thus $\theta=\sigma_{i}\left(\sigma_{i}^{-1} \theta \sigma_{i}\right) \sigma_{i}^{-1} \in \sigma_{i} G_{1} \sigma_{i}^{-1}$.
(c) (3 points) Prove that if G is abelian, then $E=F\left[\alpha_{1}\right]$.

Solution. Notice E / F is Galois: normality is by design and separability is automatic as $\operatorname{char}(F)=0$. Thus we can invoke the fundamental theorem of Galois theory, which tells us $E=F\left[\alpha_{1}\right]$ if and only if $\operatorname{Aut}_{F\left[\alpha_{1}\right]}(E)=\{\mathrm{id}\}$, i.e. if and only if $G_{1}=\{\mathrm{id}\}$. To see this, suppose $\theta \in G_{1}$. Then by part (b) one has $\sigma_{i} \theta \sigma_{i}^{-1} \in G_{i}$ for each i, but because G is abelian this says that $\theta \in G_{i}$ for each i, meaning $\theta\left(\alpha_{i}\right)=\alpha_{i}$ for each i. Because $E=F\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ we deduce $\theta=\mathrm{id}$, which shows the result.
3. (5 points) Let F be a characteristic zero field. Suppose p is a prime number, and f is a monic irreducible polynomial of degree p in $F[x]$. Let E be a splitting field of f over F. Suppose f is solvable by radicals over F. Prove that if α and α^{\prime} are two distinct zeros of f, then $E=F\left[\alpha, \alpha^{\prime}\right]$.

Solution. The fact that f is solvable by radical over F implies that $\mathscr{G}_{f, F}$ is a solvable group. If we think of $\mathscr{G}_{f, F}$ as a subgroup of S_{p}, then the fact that f is irreducible implies that $\mathscr{G}_{f, F}$ acts transitively on $\{1, \ldots, p\}$ (this follows from Problem 2a, or one could repeat the argument here). Thus we can invoke the fact given above, and conclude that any non-trivial element of $\mathscr{G}_{f, F}$ fixes at most one point. It follows that if α, α^{\prime} are distinct zeros of f, then the only element of $\mathscr{G}_{f, F}$ which fixes both α and α^{\prime} is the identity. Thus $\operatorname{Aut}_{F\left[\alpha, \alpha^{\prime}\right]}(E)=\{\mathrm{id}\}=\operatorname{Aut}_{E}(E)$, and then it follows from the fundamental theorem of Galois theory that $E=F\left[\alpha, \alpha^{\prime}\right]$.
4. Suppose p is a prime number more than 4 , and $f(x)=x^{p}-4 x+2 \in \mathbb{Q}[x]$.
(a) (1 points) Prove that f^{\prime} has exactly 2 real zeros in \mathbb{C}.

Solution. We calculate $f^{\prime}(x)=p x^{p-1}-4$, and directly see the real zeros of f^{\prime} are $\pm \sqrt[p-1]{4 / p}$.
(b) (2 points) Prove that f has exactly 3 real zeros in \mathbb{C}.

Solution. If f has n real zeros, say $a_{1}<a_{2}<\cdots<a_{n}$, then using Rolle's theorem one finds for each $i \in[1, n-1]$ some $x_{i} \in\left(a_{i}, a_{i+1}\right)$ with $f^{\prime}\left(x_{i}\right)=0$. This means f^{\prime} has at least $n-1$ real zeros, so combining with part (a) we see that f has at most 3 real zeros. On the other hand, we notice that $f(-2)<0, f(0)>0, f(1)<0$ and $f(2)>0$, so the intermediate value theorem tells us that f has zeros in the intervals $(-2,0),(0,1)$ and $(1,2)$, so f has at least 3 real zeros. Thus f has exactly 3 real zeros.
(c) (2 points) Prove that f is irreducible in $\mathbb{Q}[x]$.

Solution. Because f is primitive this is equivalent to being irreducible in $\mathbb{Z}[x]$, and this fact follows immediately from Eisenstein's criterion with $p=2$.
(d) (3 points) Prove that f is not solvable by radicals over \mathbb{Q}.

Solution. As we have argued twice now, the fact that f is irreducible implies that $\mathscr{G}_{f, \mathbb{Q}}$ acts transitively on the roots of f. If we let $E \subseteq \mathbb{C}$ be a splitting field of f over \mathbb{Q}, so $\mathscr{G}_{f, \mathbb{Q}}=\operatorname{Aut}_{\mathbb{Q}}(E)$, and we let $\tau \in \mathscr{G}_{f, \mathbb{Q}}$ denote the restriction of complex conjugation to E (which makes sense because E / \mathbb{Q} is normal), then notice that $\tau \neq$ id because f has $p>4$ zeros, of which only 3 are real. But τ fixes these three real roots, and then using the fact given at the top of the page one concludes that $\mathscr{G}_{f, \mathbb{Q}}$ cannot be solvable, so f is not solvable by radicals over \mathbb{Q}.

