
QUIZ 2 SOLUTIONS, MATH100C, SPRING 2021

For questions 3 and 4 you can use the following theorem from group theory:

Suppose p is a prime and G is a subgroup of Sp which acts transitively on {1, . . . , p}. Then G is solvable
if and only if every non-trivial element of G fixes at most one point; that means if σ ∈ G, σ(i) = i, and
σ(j) = j for distinct values i and j, then σ = id.

1. Suppose F is a field of characteristic p > 0. Suppose E/F is a purely in separable extension and
L/E is an algebraic extension. Suppose α ∈ L.
(a) (1 points) Prove that mα,E divides mα,F in E[x].

Solution. Because F ⊆ E we have mα,F ∈ E[x], and because mα,F (α) = 0, we deduce from the
defining property of the minimal polynomial that mα,E |mα,F in E[x].

(b) (2 points) Prove that for some integer power q of p, we have mq
α,E ∈ F [x].

Solution. Write mα,E(x) = a0 + a1x+ · · ·+ an−1x
n−1 + xn for ai ∈ E. Because E/F is purely

inseparable, for each i we can find some mi ≥ 0 such that ap
mi

i ∈ F . Letting m = lcm(mi) and
letting q = pm we have aqi ∈ F for each i. But then

mq
α,E(x) = (a0 + · · ·+ an−1x

n−1 + xn)q = aq0 + · · ·+ aqn−1x
(n−1)q + xnq ∈ F [x].

(c) (1 points) Prove that for some integer power q of p, mα,F divides mq
α,E in E[x].

Solution. Take q as in part (b). Then mq
α,E ∈ F [x] and mq

α,E(α) = 0, so by the defining

property of the minimal polynomial we obtain mα,F |mq
α,E in E[x].

(d) (4 points) Prove that if mα,F is separable in F [x], then [F [α] : F ] = [E[α] : E].

Solution. Part (a) tells us that that mα,E is separable in E[x] and that every root of mα,E

(taken in some splitting field over L) is also a root of mα,F . But part (c) tells us that every root
of mα,F is also a root of mq

α,E , and hence is also a root of mα,E . Thus we see that mα,F and
mα,E have precisely the same roots in some splitting field, so because they are both separable
polynomials in E[x] we find that mα,F = mα,E .

2. Suppose F is a field of characteristic zero and f ∈ F [x] is a monic irreducible polynomial. Let E
be a splitting field of f over F . Suppose f(x) =

∏n
i=1(x − αi) in E[x]. Let G := AutF (E) and

Gi := AutF [αi](E).
(a) (3 points) Prove that there is σi ∈ G such that σi(α1) = αi for every i.

Outline of solution. This follows from the fact that f is irreducible: one can find an F -
isomorphism θi : F [α1] → F [αi] for any i, and then this can be extended to the splitting
field E to get the desired σi.

(b) (3 points) Prove that Gi = σiG1σ
−1
i for every i.

Solution. Notice σ ∈ Gi if and only if σ(αi) = αi.

On one hand if θ ∈ G1 then one has (σiθσ
−1
i )(αi) = σi(θ(α1)) = σi(α1) = αi, so σiθσ

−1
i ∈ Gi.

Conversely if θ ∈ Gi then one has (σ−1i θσi)(α1) = σ−1i (θ(αi)) = σ−1i (αi) = α1, and thus

θ = σi(σ
−1
i θσi)σ

−1
i ∈ σiG1σ

−1
i .
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(c) (3 points) Prove that if G is abelian, then E = F [α1].

Solution. Notice E/F is Galois: normality is by design and separability is automatic as
char(F ) = 0. Thus we can invoke the fundamental theorem of Galois theory, which tells us
E = F [α1] if and only if AutF [α1](E) = {id}, i.e. if and only if G1 = {id}. To see this, suppose

θ ∈ G1. Then by part (b) one has σiθσ
−1
i ∈ Gi for each i, but because G is abelian this says

that θ ∈ Gi for each i, meaning θ(αi) = αi for each i. Because E = F [α1, . . . , αn] we deduce
θ = id, which shows the result.

3. (5 points) Let F be a characteristic zero field. Suppose p is a prime number, and f is a monic
irreducible polynomial of degree p in F [x]. Let E be a splitting field of f over F . Suppose f is
solvable by radicals over F . Prove that if α and α′ are two distinct zeros of f , then E = F [α, α′].

Solution. The fact that f is solvable by radical over F implies that Gf,F is a solvable group.
If we think of Gf,F as a subgroup of Sp, then the fact that f is irreducible implies that Gf,F acts
transitively on {1, . . . , p} (this follows from Problem 2a, or one could repeat the argument here).
Thus we can invoke the fact given above, and conclude that any non-trivial element of Gf,F fixes at
most one point. It follows that if α, α′ are distinct zeros of f , then the only element of Gf,F which
fixes both α and α′ is the identity. Thus AutF [α,α′](E) = {id} = AutE(E), and then it follows from
the fundamental theorem of Galois theory that E = F [α, α′].

4. Suppose p is a prime number more than 4, and f(x) = xp − 4x+ 2 ∈ Q[x].
(a) (1 points) Prove that f ′ has exactly 2 real zeros in C.

Solution. We calculate f ′(x) = pxp−1 − 4, and directly see the real zeros of f ′ are ± p−1
√

4/p.

(b) (2 points) Prove that f has exactly 3 real zeros in C.

Solution. If f has n real zeros, say a1 < a2 < · · · < an, then using Rolle’s theorem one finds for
each i ∈ [1, n − 1] some xi ∈ (ai, ai+1) with f ′(xi) = 0. This means f ′ has at least n − 1 real
zeros, so combining with part (a) we see that f has at most 3 real zeros. On the other hand,
we notice that f(−2) < 0, f(0) > 0, f(1) < 0 and f(2) > 0, so the intermediate value theorem
tells us that f has zeros in the intervals (−2, 0), (0, 1) and (1, 2), so f has at least 3 real zeros.
Thus f has exactly 3 real zeros.

(c) (2 points) Prove that f is irreducible in Q[x].

Solution. Because f is primitive this is equivalent to being irreducible in Z[x], and this fact
follows immediately from Eisenstein’s criterion with p = 2.

(d) (3 points) Prove that f is not solvable by radicals over Q.

Solution. As we have argued twice now, the fact that f is irreducible implies that Gf,Q acts
transitively on the roots of f . If we let E ⊆ C be a splitting field of f over Q, so Gf,Q = AutQ(E),
and we let τ ∈ Gf,Q denote the restriction of complex conjugation to E (which makes sense
because E/Q is normal), then notice that τ 6= id because f has p > 4 zeros, of which only 3 are
real. But τ fixes these three real roots, and then using the fact given at the top of the page one
concludes that Gf,Q cannot be solvable, so f is not solvable by radicals over Q.


