QUIZ 1, MATH100C, SPRING 2021

- 1. Let $\zeta_n := e^{2\pi i/n}$.
 - (a) (2 points) Prove that $\mathbb{Q}[\zeta_n]/\mathbb{Q}$ is Galois.
 - (b) (2 points) Prove that $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}[\zeta_n])$ is abelian.
 - (c) (2 points) Prove that F/\mathbb{Q} is Galois for every $F \in \text{Int}(\mathbb{Q}[\zeta_n]/\mathbb{Q})$.
 - (d) (2 points) Prove that $\mathbb{Q}[\sqrt[3]{2}]$ is not a subfield of $\mathbb{Q}[\zeta_n]$ for any positive integer *n*.
- 2. Suppose F is a field of characteristic p > 0 and E/F is a field extension. Suppose gcd([E : F], p) = 1. (a) (4 points) Prove that $m_{\alpha,F}(x)$ is separable in F[x] for every $\alpha \in E$.
 - (b) (2 points) Prove that E/F is a separable extension.
- 3. Suppose $f(x) \in \mathbb{Q}[x]$ is irreducible and it has both a real and a non-real complex zero. Suppose $E \subseteq \mathbb{C}$ is a splitting field of f over \mathbb{Q} .
 - (a) (2 points) Let $F := E \cap \mathbb{R}$. Prove that [E : F] = 2. (Hint: consider the complex conjugation $\tau : \mathbb{C} \to \mathbb{C}, \tau(z) := \overline{z}$ and argue that $\tau|_E \in \operatorname{Aut}_{\mathbb{Q}}(E)$.)
 - (b) (4 points) Prove that F/\mathbb{Q} is not a normal extension.
- 4. (10 points) Suppose $f \in \mathbb{Q}[x]$ is monic, irreducible and deg f = p is prime. Suppose $E \subseteq \mathbb{C}$ is a splitting field of f over \mathbb{Q} and $\alpha \in E$ is a zero of f. Prove that there is $\theta \in \operatorname{Aut}_{\mathbb{Q}}(E)$ such that

$$f(x) = \prod_{i=0}^{p-1} (x - \theta^{i}(\alpha)).$$