
HOMEWORK ASSIGNMENTS

1. Week 1

1. Prove that AutQ(Q[ 3
√

2]) = {id}.

2. Suppose p is prime and ζp := e2πi/p. Prove that

AutQ(Q[ζp,
p
√

2]) '
{(

a b
0 1

)
| a ∈ Z×p , b ∈ Zp

}
.

3. Suppose F is a field.
(a) Suppose f ∈ F [x] is irreducible. Prove that f is not separable if and only if f ′(x) = 0 (Look at

Section 24.1 in the lecture note).

(b) Prove that if char(F ) = 0, then every non-constant polynomial in F [x] is separable.

(c) Suppose char(F ) = p is prime. Suppose f0 ∈ F [x] is irreducible and non-separable. Prove that
f0(x) = f1(xp) for some irreducible polynomial f1 ∈ F [x].

(d) Suppose char(F ) = p is prime. Suppose f0 ∈ F [x] is irreducible and non-separable. Prove that
f0(x) = h(xp

m

) for some positive integer m and an irreducible separable polynomial h ∈ F [x].

4. Suppose F is a field char(F ) = p is prime and φ : F → F, φ(a) = ap is not surjective. Image of φ is
denoted by F p. Prove that F/F p is not separable.

5. Suppose E/F is an algebraic field extension.
(a) If char(F ) = 0, then prove that E/F is separable.

(b) If char(F ) = p is prime and φ : F → F, φ(a) = ap is surjective, then prove that E/F is separable.

2. Week 2

1. Suppose F is a field of characteristic zero and it contains an element ζ such that the multiplicative
order of ζn is n. For a ∈ F , n

√
a denotes a zero of xn − a. Let (F×)n := {an | a ∈ F×}. Notice that

(F×)n is a subgroup of F×.
(a) Prove that F [ n

√
a]/F is a Galois extension for every a ∈ F×.

(b) Prove that fa : AutF (F [ n
√
a])→ 〈ζn〉, fa(σ) := σ( n

√
a)

n
√
a

is an injective group homomorphism.

(c) Use the previous part to deduce that AutF (F [ n
√
a]) is cyclic. Suppose σ0 generates AutF (F [ n

√
a]),

and prove that for α ∈ F [ n
√
a], we have σ0(α) = α if and only if α ∈ F .

2. Suppose F is a field of characteristic zero and it contains an element ζ such that the multiplicative
order of ζn is n. For a ∈ F , n

√
a denotes a zero of xn − a.

(a) Suppose AutF (F [ n
√
a]) = 〈σ0〉. Prove that for every positive integer d we have

σd0 = id ⇐⇒ (a(F×)n)d = (F×)n in F×/(F×)n.

1
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(b) Prove that AutF (F [ n
√
a]) ' 〈a(F×)n〉, where 〈a(F×)n〉 is the subgroup of F×/(F×)n which is

generated by a(F×)n.

3. Suppose F is a field of characteristic zero and it contains an element ζ such that the multiplicative
order of ζn is n. For a ∈ F , n

√
a denotes a zero of xn − a. Prove that for a1, a2 ∈ F we have

F [ n
√
a1] = F [ n

√
a2] if and only if 〈a1(F×)n〉 = 〈a2(F×)n〉.

(Hint: Let fa1 and fa2 be the group embeddings given in the earlier problems. Argue that the
image of fa1 is equal to the image of fa2 .)

4. Suppose F is a field and p is a prime with the following property: if E/F is a finite field extension
and E 6= F , then p divides [E : F ].
(a) Prove that if E/F is a finite Galois extension, then [E : F ] = pn for some integer n.

(Hint: let P be a Sylow p-subgroup of AutF (E) and consider Fix(P ).)

(b) Prove that if E/F is a finite separable extension, then [E : F ] = pn for some integer n.
(Hint: consider a normal closure L/F of E/F .)

(c) Suppose there is a finite non-separable extension E/F . Prove that char(F ) = p.

3. Week 3

1. (a) Suppose E/F is a field extension and K ∈ Int(E/F ). Prove that E/F is purely inseparable if
and only if E/K and K/F are purely inseparable.

(b) Suppose E/F is a finite purely inseparable extension. Prove that [E : F ] = pm for some integer
m where p = char(F ).

(c) Suppose F is a field and p is a prime with the following property: if E/F is a finite field
extension and E 6= F , then p divides [E : F ]. Prove that [E : F ] = pn for some integer n.

2. Suppose F is a field of characteristic p > 2. Let F (t) :=
{
f(t)
g(t) | f, g ∈ F [t]

}
be the field of rational

functions. Suppose σ, τ ∈ AutF (F (t)) are such that σ(t) := t + 1 and τ(t) = −t. Let H be the
subgroup generated by σ and τ .
(a) Prove that Fix(τ) = F (t2) and Fix(σ) = F (tp − t).

(b) Prove that Fix(H) = F ((tp − t)2).

(c) Prove that F (t2)/F ((tp − t)2) is not a normal extension.

3. Suppose E/F is a finite Galois extension and f ∈ F [x] \ F . Suppose L is a splitting field of a
separable polynomial f over E. Prove that L/F is a Galois extension.

4. Suppose p is prime, σ = (0, 1, . . . , p − 1) in the symmetric group Sp of the set {0, 1, . . . , p − 1} and
τ = (0, a) ∈ Sp for some integer a ∈ [1, p− 1]. Let Ha be the group generated by σ and τ .
(a) Prove that H1 = Sp. (Hint: Notice that γ := (0, 1)(0, 1, . . . , p − 1) = (1, . . . , p − 1) ∈ H1.

Recall or convince yourself that for every α ∈ Sp we have α(0, 1)α−1 = (α(0), α(1)). Consider
γi(0, 1)γ−i and deduce that (i, i + 1) is in H1 for every i. Notice that (1, 2)(0, 1)(1, 2) = (0, 2)
and continue like that to obtain that (0, i) ∈ H1. Use this to conclude that all the transpositions
(i, j)’s are in H1. Deduce that H1 = Sp.)
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(b) Prove that Ha = Sp. (Hint: Notice that σi(0, a)σ−i = (i, a+i) where + is in Zp := {0, . . . , p−1}.
Hence (ka, (k+1)a) ∈ Ha for every k. Next notice that (a, 2a)(0, a)(a, 2a) = (0, 2a) and continue
like that to conclude that (0, ak) ∈ Ha for every k. Deduce that (0, 1) ∈ Ha.)

5. Suppose p > 4 is prime, and f ∈ Q[x] is an irreducible polynomial of degree p which has two non-real
complex zeros and p− 2 real zeros. Let E ⊆ C be a splitting field of f over Q.
(a) Prove that AutQ(E) ' Sp.

(b) Prove that f is not solvable by radicals over Q,

4. Week 4

1. Suppose L/F is an algebraic extension. Let

Fab := {α ∈ L | F [α]/F is Galois, and AutF (F [α]) is abelian}.
Prove that Fab/F is a Galois extension. Moreover prove that AutF (Fab) is abelian if L/F is a finite
extension.

2. Suppose E/F is a finite normal extension, and

Esep := {α ∈ E | mα,F is separable}.
(a) Prove that Esep/F is a Galois extension.

(b) Prove that r : AutF (E)→ AutF (Esep), r(θ) := θ|Esep
is a group isomorphism.

(c) Let K := Fix(AutF (E)). Prove that [E : K] = [Esep : F ], E/K is Galois, and K/F is purely
inseparable.

3. For a finite extension E/F , we let [E : F ]s := [Esep : F ]. Suppose K ∈ Int(E/F ).

Let Esep,K be the separable closure of K in E/K, let Esep,F be the separable
closure of F in E/F , and let Ksep,F be the separable closure of F in K/F .

(a) In the above setting prove that Ksep,F ⊆ Esep,F ⊆ Esep,K .

(b) Argue that there is α ∈ Esep,F such that Esep,F = Ksep,F [α].

(c) Prove that Esep,K/K[α] is both separable and purely inseparable.
Deduce that Esep,K = K[α].

(d) Prove that mα,K |mα,Ksep,F
and mα,Ksep,F

|mq
α,K where q is either 1

if char(F ) = 0 or a power of p if char(F ) = p > 0. Deduce that
mα,K = mα,Ksep,F

.

(e) Prove that [E : F ]s = [E : K]s[K : F ]s.

E

Esep,K

Esep,F

K

Ksep,F

F
4. Suppose F is a field, L := F (x1, . . . , xn) is the field of fractions of F [x1, . . . , xn]. For σ ∈ Sn and
f ∈ L, let Tσ(f) = f(xσ−1(1), . . . , xσ−1(n)).
(a) Prove that T : Sn → AutF (L), (T (σ))(f) := Tσ(f) is an injective group homomorphism.

(b) Let K := Fix(T (Sn)). Elements of K are called symmetric functions. Let

(t− x1) · · · (t− xn) = tn − s1tn−1 + s2t
n−2 − · · ·+ (−1)nsn.

Let E := F (s1, . . . , sn). Prove that L is a splitting field of tn − s1tn−1 + · · ·+ (−1)nsn over E.
Deduce that [L : E] ≤ n!.
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(c) Prove that K = E.

(d) For f ∈ L, let G(f) := {σ ∈ Sn | Tσ(f) = f}. Prove that Fix(T (G(f))) = K[f ].

(e) Prove that G(f) ⊆ G(g) for f, g ∈ L if and only if there is θ ∈ K[t] such that g = θ(f).
(This result is known as Lagrange’s Rational Function Theorem, and Lagrange proved this result
before Galois theory was developed. Along the way, he proved some results about permutation
groups, which later got generalized to what we call Lagrange’s theorem in group theory!)

5. Week 5

1. Suppose L/F is a field extension and L is algebraically closed. Suppose E is the algebraic closure of
F in L. Prove that E is algebraically closed.

2. Suppose E/F is an algebraic extension and every f ∈ F [x]\F can be decomposed into linear factors
in E[x]. Prove that E is algebraically closed.

3. Suppose F is a perfect field, and F is an algebraic closure of F ; that means F/F is an algebraic
extension and F is algebraically closed. Let

Intf,n(F/F ) := {E ∈ Int(F/F ) | E/F is a finite normal extension},
and

On(AutF (F )) := {AutE(F ) | E ∈ Intf,n(F/F )}.
(a) For E ∈ Intf,n(F/F ), let rE : AutF (F )→ AutF (E) be the restriction map rE(φ) := φ|E . Argue

why rE is a well-defined surjective group homomorphism.

(b) Suppose E,E′ ∈ Intf,n(F/F ) and E ⊆ E′. Let rE′,E : AutF (E′)→ AutF (E) be the restriction
map rE′,E(θ) := θ|E . Argue that rE′,E is a well-defined surjective group homomorphism and
rE = rE′,E ◦ rE′ .

(c) Let G(F/F ) := {(φE) ∈
∏
E∈Intf,n(F/F ) AutF (E) | ∀E ⊆ E′, rE′,E(φ′E) = φE}. (So G(F/F )

consists of families of compatible automorphisms of finite normal extensions of F . This is called
the inverse limit of AutF (E)’s). Consider

r : AutF (F )→ G(F/F ), r(φ) := (rE(φ))E∈Intf,n(F/F ).

Prove that r is a well-defined isomorphism.

4. Suppose Fp is an algebraic closure of Fp.
(a) Prove that for every positive integer n there is a unique Fn ∈ Int(Fp/Fp) that is isomorphic to

Fpn .

(b) Prove that Intf,n(Fp/Fp) = {Fn | n ∈ Z+} and Fp =
⋃∞
n=1 Fn.

(c) Let Ẑ := {(an) ∈
∏∞
n=2 Zn | ∀n|n′, an′ ≡ an (mod n)}. Prove that AutFp(Fp) ' Ẑ.

(d) Prove that Ẑ does not have a torsion element.

(e) Prove that if Fp/E is a finite extension, then E = Fp.

6. Week 6

1. Prove that Q[cos( 2π
n )]/Q is a Galois extension and AutQ(Q[cos( 2π

n )]) ' Z×n /{±1}.
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2. Suppose E/F is a field extension, and f ∈ F [x] is a polynomial of degree n with distinct zeros
α1, . . . , αn in E. Suppose [F [α1, α2] : F ] = n(n− 1).
(a) Find the degrees of irreducible factors of f in F [x] and (F [α1])[x].

(b) Prove that Gf,F acts two transitively on {α1, . . . , αn}; that means for every i 6= j, there is
θ ∈ Gf,F such that θ(α1) = αi and θ(α2) = αj .

(c) Let g(x) := mα1+α2,F (x). Prove that g(αi + αj) = 0 for every i 6= j.

3. Suppose K0 := Q ⊆ K1 ⊆ · · · ⊆ Kn ⊆ C is a tower of fields such that Ki+1/Ki is a Galois extension
and [Ki+1 : Ki] = pi where pi is an odd prime for all i.
(a) Prove that Ki ⊆ R for all i.

(b) Prove that Q[ 3
√

2] is not contained in Kn.

4. Suppose F is a field and F is an algebraic closure of F . Suppose K,E ∈ Int(F /F ) such that K/E
is a Galois extension and [K : E] = p where p is prime. Suppose E/F is a Galois extension and
|AutF (E)| = pm for some integer m.
(a) Argue why there is α ∈ K such that K = E[α]. Let L ∈ Int(F /E). Prove that L[α]/L is a

Galois extension and [L[α] : L] = 1 or p.

(b) Argue that for every θi ∈ AutF (E), there is θ̂i ∈ AutF (F) such that θ̂i|E = θi. Let αi := θ̂i(α).
Prove that E[αi]/E is a Galois extension and [E[αi] : E] = p for all i.

(c) In the above setting, prove that E[α1, . . . , αpm ]/F is a Galois extension, and if L̂ ∈ Int(F /K)

and L̂/F is Galois, then E[α1, . . . , αpm ] ⊆ L̂. (We say E[α1, . . . , αpm ] is a Galois closure of
K/F .)

(d) Prove that [E[α1, . . . , αpm ] : F ] is a power of p.

7. Week 7

1. Suppose p1, . . . , pn are distinct primes. Let F := Q[
√
p1, . . . ,

√
pn].

(a) Prove that F/Q is a Galois extension and AutQ(F ) ' Z2 × · · · × Z2︸ ︷︷ ︸
n times

.

(b) Prove that every K ∈ Int(F/Q) which is a quadratic extension of Q is of the form Q[
√∏

i∈I pi]
where I is a non-empty subset of {1, 2, . . . , n}.

(c) Prove that F = Q[
√
p1 + · · ·+√pn].

2. Suppose p is an odd prime number and ζn := e
2πi
n for every positive integer n.

(a) Prove that Q[ζ4p] = Q[ζp, i].

(b) Prove that Q[sin( 2π
p )]/Q is a Galois extension and AutQ[sin( 2π

p )](Q(ζ4p)) = {id, τ} where τ is the

restriction of the complex conjugation.

(c) Prove that AutQ(Q[sin( 2π
p )]) ' Z×4p

{±1} ; in particular [Q[sin( 2π
p )] : Q] = p− 1.

3. Suppose p is prime, F is a field of characteristic zero, and a ∈ F . Let E be a splitting field of xp− a
over F .
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(a) Suppose α ∈ E is a zero of xp − a. Argue that there is an element ζ of order p in E such that
xp − a = (x − α)(x − ζα) · · · (x − ζp−1α). Suppose f(x) ∈ F [x] divides xp − a and deg f < p.
Prove that ζiαdeg f is in F for some integer i.

(b) Prove that if xp − a is reducible in F [x], then xp − a has a zero in F .

4. Suppose n, n1, . . . , nk are positive integers.
(a) Use a special case of Dirichlet’s theorem which says that there are infinitely many primes in the

arithmetic progression {mk+ 1}∞k=1 for every positive integer m, to show that Zn is isomorphic
to a quotient of Z×p for some prime p.

(b) Prove that Zn1 × · · · × Znk is isomorphic to a quotient of Z×q for some q = p1 · · · pk and primes
pi’s.

(c) Prove that there is a Galois extension F/Q such that AutQ(F ) ' Zn1
× · · · × Znk .

8. Week 8

1. Suppose R is a unital commutative ring and n is a positive integer. For every permutation σ ∈ Sn,
let

dσ : Rn × · · · ×Rn → R, dσ(v1, . . . ,vn) :=

n∏
j=1

vσ(j)j

where vj =

v1j...
vnj

. Let

d : Rn × · · · ×Rn → R, d(v1, . . . ,vn) :=
∑
σ∈Sn

sgn(σ)dσ(v1, . . . ,vn).

(a) Prove that for every σ ∈ Sn and integer i ∈ [1, n], dσ is an R-module homomorphism from Rn

to R with respect to vi. This means

dσ(v1, . . . ,vi−1,vi + cv′i,vi+1, . . . ,vn) = dσ(v1, . . . ,vn) + cdσ(v1, . . . ,vi−1,v
′
i,vi+1, . . . ,vn)

for every vj ’s and v′i in Rn, and c ∈ R. (We say dσ is n-linear).
(b) Prove that d is n-linear.
(c) Suppose vi = vj and τ is the transposition (i, j) ∈ Sn. Prove that for every σ ∈ Sn, we have

dστ (v1, . . . ,vn) = dσ(v1, . . . ,vn).

(d) Suppose vi = vj for some i 6= j. Prove that d(v1, . . . ,vn) = 0. (We say d is alternating.)
(e) For every index i, we identify {1, . . . , n} \ {i} with {1, . . . , n − 1} by shifting all the numbers

more than i by 1; this means we let

`i : {1, . . . , n} \ {i} → {1, . . . , n− 1}, `i(j) :=

{
j if j < i

j − 1 if j > i.

For every σ ∈ Sn and integer i in [1, n], we let σi be the induced permutation on {1, . . . , n}
after dropping i; this means σi is the composite of the following bijections

{1, . . . , n− 1}
`−1
i−−→ {1, . . . , n} \ {i} σ−→ {1, . . . , n} \ {σ(i)}

`σ(i)−−−→ {1, . . . , n− 1}.

Let σ̂i ∈ Sn be such that σ̂i(j) = σi(j) if j < n and σ̂i(n) = n. Prove that

σ̂i = (σ(i), . . . , n)−1 σ (i, . . . , n)
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where the first and the last factors are cycle permutations in Sn. Deduce that

sgn(σi) = (−1)i+σ(i) sgn(σ).

(f) For indexes i, k, let v
(k)
i be the (n−1)-by-1 column that we obtain after dropping the k-th row of

vi. We want to start with n column vectors in Rn, drop the j-th vector and the k-th components

of the rest to get n− 1 vectors in Rn−1. Starting with v1, . . . ,vn, we get wr := v
(k)

`−1
j (r)

. Justify

yourself that the σj(r) component of wr is the σ(`−1j (r))-th component of v`−1
j (r) if σ(j) = k.

Prove that

dσ(v1, . . . ,vj−1, ek,vj+1, . . . ,vn) =

{
dσj (w1, . . . ,wn−1) if σ(j) = k

0 otherwise,

where ei is the column matrix with 1 in its i-th row and 0 in the rest of entries.
(g) Prove that

d(v1, . . . ,vj−1, ek,vj+1, . . . ,vn) = (−1)j+kd(v
(k)

`−1
j (1)

, . . . ,v
(k)

`−1
j (n−1)),

and deduce that

(1) d(v1, . . . ,vn) =

n∑
k=1

(−1)j+kvkj d(v
(k)

`−1
j (1)

, . . . ,v
(k)

`−1
j (n−1)).

2. Suppose R is a unital commutative ring and f : Rn × Rn → R is bilinear; that means it is an
R-module homomorphism with respect to each component separately. Suppose f(v,v) = 0 for every
v ∈ Rn. Prove that f(v,w) = −f(w,v) for every v,w ∈ Rn. (Hint. Consider f(v + w,v + w).)

3. Suppose R is a unital commutative ring and n is a positive integer n. Suppose f : Rn×· · ·×Rn → R
is n-linear and alternating.
(a) Write vj =

∑n
i=1 vijei where ei is the column matrix with 1 in its i-th row and 0 in the rest of

entries. Argue why

f(v1, . . . ,vn) =
∑
σ∈Sn

f(eσ(1), . . . , eσ(n))

n∏
j=1

vσ(j)j .

(b) Argue why f(eσ(1), . . . , eσ(n)) = sgn(σ)f(e1, . . . , en) for every σ ∈ Sn.
(c) Prove that f = f(e1, . . . , en)d where d is the function given in the first problem.

4. Suppose R is a unital commutative ring, n is a positive integer, and A ∈ Mn(R). Let

fA : Rn × · · · ×Rn → R, fA(v1, . . . ,vn) := d(Av1, . . . , Avn),

where d is the function given in problem 1. Let

det : Mn(R)→ det(X) := d(x1, . . . ,xn),

where xj is the j-th column of X.
(a) Prove that fA is n-linear and alternating.
(b) Prove that fA(x1, . . . ,xn) = det(AX) where xj is the j-th column of X.
(c) Prove that det(XY ) = det(X) det(Y ) for every X,Y ∈ Mn(R).
(d) For X ∈ Mn(R) and indexes i, j, let Xij be the (n− 1)-by-(n− 1) matrix that we obtain after

dropping the i-th row and the j-th column of X. Use (1) and prove that

det(X) =

n∑
k=1

(−1)j+kxkj det(Xkj).

(e) For X ∈ Mn(R), we define the adjoint adj(X) of X as an n-by-n matrix with the (j, k)-entry
equals to (−1)j+k det(Xkj), where Xkj is as in the previous part. Use the previous part to show

adj(X)X = det(X)I.
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(for the off diagonal entries, again use the previous problem and notice that on the left hand
side you end up getting determinant of a matrix with repeated columns!)

(f) Justify why det(X) = det(Xt) where Xt is the transpose of X, and deduce that we could work
with rows of X instead of its columns, and we obtain

det(X) =

n∑
j=1

(−1)j+kxkj det(Xkj),

and so

X adj(X) = det(X)I.

9. Week 9

1. For a finite abelian group A, let Â be its dual group.

(a) Suppose A1 and A2 are two finite abelian groups. Prove that ̂A1 ×A2 ' Â1 × Â2.

(b) Suppose A is a finite cyclic group. Prove that Â is a cyclic group and deduce that A ' Â.

(c) Suppose A is a finite abelian group. Prove that A ' Â.

2. Suppose Ai’s are square matrices with entries in a unital commutative ring R. Prove that

det


A1 ∗ · · · ∗
0 A2 · · · ∗
...

...
. . .

...
0 0 · · · An

 =

n∏
i=1

detAi.

3. Recall that an element a of a ring is called nilpotent if ak = 0 for some positive integer k.
(a) Suppose F is a field and A ∈ Mn(F ) is nilpotent. Prove that the characteristic polynomial of

A is xn, and deduce that An = 0.

(b) Suppose R is a unital commutative ring. Suppose A ∈ Mn(R) is nilpotent and P is a prime
ideal of R. Prove that all the entries of An are in P .

(c) Suppose R is a unital commutative ring which has no non-zero nilpotent elements. Suppose
A ∈ Mn(R) is nilpotent. Prove that An = 0. (Hint: you are allowed to use the following result
that we have proved in one of the discussion and problem sessions: the set of all nilpotent
elements of R is equal to the intersection of all the prime ideals of R.)

4. Suppose E/F is a finite Galois extension and AutF (E) = 〈σ〉 is a cyclic group of order n. For a ∈ E,
let τa : E → E, τa(e) := aσ(e). Notice that τa is an F -linear map.
(a) Prove that the minimal polynomial of τa is p(x) := xn −NE/F (a).

(b) Prove that the companion C(p) of the polynomial p(x) = xn −NE/F (a) is a rational canonical
form of τa.

(c) (Hilbert’s theorem 90) Suppose NE/F (a) = 1 and argue why C(p)(e1 + · · ·+en) = e1 + · · ·+en.
Deduce that a = e

σ(e) for some e ∈ E.

(d) Use part (b) for τ1 = σ and prove that there is e0 ∈ E such that B0 := (e0, σ(e0), . . . , σn−1(e0))
is an F -basis of E.
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5. Suppose E/F is a finite Galois extension and AutF (E) = 〈σ〉 is a cyclic group of order n. For a ∈ E,
let TE/F (a) := a+ σ(a) + · · ·+ σn−1(a).
(a) Suppose B0 is the F -basis of E which is given in 4(d). Notice that [σ]B0

is the companion

matrix of xn − 1. Prove that TE/F (a) = 0 if and only if c1 + · · ·+ cn = 0 where [a]B0 =

c1...
cn

.

(b) Suppose for c1, . . . , cn ∈ F , we have
∑n
i=1 ci = 0. Prove that

−1 0 0 · · · 0 1
1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 0
0 0 0 · · · 1 −1


x =

c1...
cn



has a solution in Fn.
(c) (Additive Hilbert’s theorem 90) Suppose a ∈ E such that TE/F (a) = 0. Prove that there is

e ∈ E such that σ(e)− e = a.

10. Week 10

1. Suppose A is a unital commutative ring, n is a positive integer, and f : An → An is a surjective
A-module homomorphism.
(a) Suppose A is a Noetherian ring.

(i) Argue why An is a Noetherian A-module.
(ii) Show that there is an integer n0 such that for every integer i ≥ n0, ker f (n0) = ker f (i).

(iii) Suppose x ∈ ker f (n0). Argue that x = f (n0)(y) for some y. Deduce that y ∈ ker f (2n0).
Use this to show that x = 0.

(iv) Prove that f is an isomorphism.
(b) Suppose A is an arbitrary unital commutative ring.

(a) Show that there are Mf := [aij ] ∈ Mn(A) and M ′ = [a′ij ] ∈Man(A) such that

f(x1, . . . , xn) = (

n∑
j=1

a1jxj , . . . ,

n∑
j=n

a1jxj)

and MfM
′ = In. Argue that f is an isomorphism if and only if Mf ∈ GLn(A).

(b) Let A′ be the subring of A which is generated by aij ’s and a′ij ’s. Argue that

Mf× : Mn,1(A′)→ Mn,1(A′), x 7→Mfx

is a surjective A′-module homomorphism.
(c) Prove that Mf ∈ GLn(A′) and deduce that f is an isomorphism.

2. What is your favorite theorem, result, method, or technique among the topics that you have
learned in math100b and math100c?


