OUTLINE OF SOLUTIONS OF SOME OF THE ASSIGNMENTS

1. Week 1

1. Prove that $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}[\sqrt[3]{2}])=\{\mathrm{id}\}$.

Outline of solution. Suppose $\theta \in \operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}[\sqrt[3]{2}])$. Because $\sqrt[3]{2}$ is a zero of $x^{3}-2 \in \mathbb{Q}[x]$, one also has that $\theta(\sqrt[3]{2})$ is a zero of $x^{3}-2$, but then $\theta(\sqrt[3]{2})=\zeta_{3}^{i} \sqrt[3]{2}$ for some $i \in\{0,1,2\}$. If $i \neq 0$ then one has $\zeta_{3}^{i} \sqrt[3]{2} \in \mathbb{Q}[\sqrt[3]{2}]$ and then by dividing you can conclude $\zeta_{3}^{i} \in \mathbb{Q}[\sqrt[3]{2}]$. Now one can obtain a contradiction using tower law.

Alternatively you can say that $\mathbb{Q}[\sqrt[3]{2}] \subseteq \mathbb{R}$, but for $i \in\{1,2\}$ the element ζ_{3}^{i} is not in \mathbb{R}.
2. Suppose p is prime and $\zeta_{p}:=e^{2 \pi i / p}$. Prove that

$$
\operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{p}, \sqrt[p]{2}\right]\right) \simeq\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, a \in \mathbb{Z}_{p}^{\times}, b \in \mathbb{Z}_{p}\right\} .
$$

Solution. We will define a function $f: \operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{p}, \sqrt[p]{2}\right]\right) \rightarrow\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \right\rvert\, a \in \mathbb{Z}_{p}^{\times}, b \in \mathbb{Z}_{p}\right\}$: to this end let $\theta \in \operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{p}, \sqrt[p]{2}\right]\right)$. Notice that θ must send ζ_{p} to another root of $\Phi_{p}(x)$, i.e. we must have $\theta\left(\zeta_{p}\right)=\zeta_{p}^{i}$ for some $i \in \mathbb{Z}$ coprime to p. Simiarly $\theta(\sqrt[p]{2})$ must be a root of $x^{p}-2$, so $\theta(\sqrt[p]{2})=\zeta_{p}^{j} \sqrt[p]{2}$ for some $j \in \mathbb{Z}$. We then define $f(\theta)=\left(\begin{array}{cc}{[i]_{p}} & {[j]_{p}} \\ 0 & 1\end{array}\right)$. To see this is well-defined we notice that $[i]_{p} \in \mathbb{Z}_{p}^{\times}$because $\operatorname{gcd}(i, p)=1$, and if $\zeta_{p}^{i}=\zeta_{p}^{i^{\prime}}$ then $i \equiv i^{\prime}(\bmod p)$; similarly if $\zeta_{p}^{j} \sqrt[p]{2}=\zeta_{p}^{j^{\prime}} \sqrt[p]{2}$ then $j \equiv j^{\prime}(\bmod p)$.

We claim f is a homomorphism: for this let $\theta, \theta^{\prime} \in \operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{p}, \sqrt[p]{2}\right]\right)$, say with $\theta\left(\zeta_{p}\right)=\zeta_{p}^{i}, \theta(\sqrt[p]{2})=$ $\zeta_{p}^{j} \sqrt[p]{2}, \theta^{\prime}\left(\zeta_{p}\right)=\zeta_{p}^{i^{\prime}}$ and $\theta^{\prime}(\sqrt[p]{2})=\zeta_{p}^{j^{\prime}} \sqrt[p]{2}$. Then we calculate

$$
\left(\theta \circ \theta^{\prime}\right)\left(\zeta_{p}\right)=\theta\left(\theta^{\prime}\left(\zeta_{p}\right)\right)=\theta\left(\zeta_{p}^{i^{\prime}}\right)=\theta\left(\zeta_{p}\right)^{i^{\prime}}=\left(\zeta_{p}^{i}\right)^{i^{\prime}}=\zeta_{p}^{i i^{\prime}},
$$

and

$$
\left(\theta \circ \theta^{\prime}\right)(\sqrt[p]{2})=\theta\left(\theta^{\prime}(\sqrt[p]{2})\right)=\theta\left(\zeta_{p}^{j^{\prime}} \sqrt[p]{2}\right)=\theta\left(\zeta_{p}\right)^{j^{\prime}} \theta(\sqrt[p]{2})=\left(\zeta_{p}^{i}\right)^{j^{\prime}}\left(\zeta_{p}^{j} \sqrt[p]{2}\right)=\zeta_{p}^{i j^{\prime}+j} \sqrt[p]{2}
$$

Thus we see that

$$
f\left(\theta \circ \theta^{\prime}\right)=\left(\begin{array}{cc}
{\left[i i^{\prime}\right]_{p}} & {\left[i j^{\prime}+j\right]_{p}} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
{[i]_{p}} & {[j]_{p}} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
{\left[i^{\prime}\right]_{p}} & {\left[j^{\prime}\right]_{p}} \\
0 & 1
\end{array}\right)=f(\theta) f\left(\theta^{\prime}\right)
$$

This shows f is a homomorphism. We now notice that f is injective, because if $f(\theta)=I$ then this means that $\theta\left(\zeta_{p}\right)=\zeta_{p}$ and $\theta(\sqrt[p]{2})=\sqrt[p]{2}$, but then $\theta=\mathrm{id}$.

Finally we notice that, because $\mathbb{Q}\left[\zeta_{p}, \sqrt[p]{2}\right]$ is the splitting field over \mathbb{Q} of the separable polynomial $x^{p}-2 \in \mathbb{Q}[x]$, we have from class that $\left|\operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{p}, \sqrt[p]{2}\right]\right)\right|=\left[\mathbb{Q}\left[\zeta_{p}, \sqrt[p]{2}\right]: \mathbb{Q}\right]=p(p-1)$, where the latter equality is a calculation we've made in a previous homework. Thus the two groups in question have the same size, so f being injective implies it is surjective as well, and then f is an isomorphism.
3. Suppose F is a field.
(a) Suppose $f(x) \in F[x]$ is irreducible. Prove that f is not separable if and only if $f^{\prime}(x)=0$.

Outline of solution. If $f^{\prime}(x)=0$ then for $c=\operatorname{ld}(f)$ we have $\operatorname{gcd}\left(f, f^{\prime}\right)$ equals f up to a unit in particular it is not equal to 1 so f is separable. On the other hand, if $f^{\prime}(x) \neq 0$ and $\operatorname{gcd}\left(f, f^{\prime}\right) \neq 1$ then using the fact that f is irreducible one can show that $\operatorname{gcd}\left(f, f^{\prime}\right)$ equals f up to a unit, and then $f \mid f^{\prime}$ which is a contradiction by degree considerations.
(b) Prove that if $\operatorname{char}(F)=0$ then every non-constant polynomial in $F[x]$ is separable.

Outline of solution. By definition of separable polynomial, one just needs to consider irreducible polynomials. If we have an irreducible polynomial $f(x)$ then necessarily $f^{\prime}(x) \neq 0$ (i.e. $f^{\prime}(x)$ is not the zero polynomial), because we are in characteristic 0 . Then one applies part (a) to deduce $f(x)$ is separable.
(c) Suppose $\operatorname{char}(f)=p$ is prime. Suppose $f_{0} \in F[x]$ is irreducible and non-separable. Prove that $f_{0}(x)=f_{1}\left(x^{p}\right)$ for some irreducible polynomial $f_{1} \in F[x]$.
Outline of solution. By part (a) we have $f_{0}^{\prime}(x)=0$. If we write $f_{0}(x)=\sum_{i=0}^{n} a_{i} x^{i}$, then $f_{0}^{\prime}(x)=\sum_{i=0}^{n-1}\left(i a_{i}\right) x^{i-1}$. Now for any i such that $a_{i} \neq 0$, deduce that $i=0$ in F, and then using $\operatorname{char}(F)=p$ deduce $p \mid i$ for any such i. Thus for each i with $a_{i} \neq 0$ we have $x^{i}=\left(x^{p}\right)^{i / p}$ and then one sees that $f_{0}(x)$ is a polynomial in x^{p}. More precisely for any $a_{i} \neq 0$ (so one has $p \mid i$) one can let $b_{i / p}:=a_{i}$, and $b_{j}=0$ other wise, and then one can take $f_{1}(x)=\sum_{i} b_{i} x^{i}$. The fact that f_{0} is irreducible implies f_{1} is irreducible, because a factorization $f_{1}(x)=g(x) h(x)$ would lead to a factorization $f_{0}(x)=g\left(x^{p}\right) h\left(x^{p}\right)$.
(d) Suppose char $(f)=p$ is prime. Suppose $f_{0} \in F[x]$ is irreducible and non-separable. Prove that $f_{0}(x)=h\left(x^{p^{m}}\right)$ for some positive integer m and some irreducible separable polynomial $h \in F[x]$.

Outline of solution. One can proceed by strong induction: if $\operatorname{deg}\left(f_{0}\right)=1$ then $f_{0}(x)$ is always separable so the statement is vacuous. If $\operatorname{deg}\left(f_{0}\right)>1$ then one can use part (c) to write $f_{0}(x)=$ $f_{1}\left(x^{p}\right)$ for some irreducible $f_{1}(x)$. Then one has $\operatorname{deg}\left(f_{0}\right)=p \operatorname{deg}\left(f_{1}\right)$ so $\operatorname{deg}\left(f_{1}\right)<\operatorname{deg}\left(f_{0}\right)$, allowing one to apply the induction hypothesis.
4. Suppose F is a field $\operatorname{char}(F)=p$ is prime and $\phi: F \rightarrow F, \phi(a)=a^{p}$ is not surjective. The image of ϕ is denoted by F^{p}. Prove that F / F^{p} is not separable.

Solution. Choose some element $\alpha \in F \backslash F^{p}$; this is possible because ϕ is not surjective by assumption. Notice that $\alpha^{p}=\phi(\alpha) \in F^{p}$, and thus we have $x^{p}-\alpha^{p} \in F^{p}[x]$. Because α is a root of this polynomial we see that $m_{\alpha, F^{p}}(x) \mid\left(x^{p}-\alpha^{p}\right)$. Also notice that $x^{p}-\alpha^{p}=(x-\alpha)^{p}$ in $F[x]$ because we are in characteristic p. Thus by unique factorization we see that $m_{\alpha, F^{p}}(x)=(x-\alpha)^{k}$ in $F[x]$ for some $1 \leq k \leq p$. Notice if $k=1$ then we would have $x-\alpha=m_{\alpha, F^{p}}(x) \in F^{p}[x]$, which would imply $\alpha \in F^{p}$, which contradicts our choice of α. Thus we must have $k \geq 2$, and we see that $m_{\alpha, F^{p}}(x)$ has at least two copies of $x-\alpha$ in its decomposition into irreducible factors in $F[x]$, which means that $m_{\alpha, F^{p}}(x)$ is not a separable polynomial. Thus $\alpha \in F$ is an element which is not separable over F^{p}, so F / F^{p} is not a separable extension.
5. Suppose E / F is an algebraic field extension.
(a) If $\operatorname{char}(F)=0$ then E / F is separable.

Outline of solution. By definition one needs to show that if $\alpha \in E$ then $m_{\alpha, F}(x)$ is a separable element of $F[x]$. This follows directly from Problem 3(b).
(b) If $\operatorname{char}(F)=p$ and $\phi: F \rightarrow F, \phi(a)=a^{p}$ is surjective, prove E / F is separable.

Solution. Again one needs to show that if $\alpha \in E$ then $m_{\alpha, F}(x) \in F[x]$ is separable. By Problem $3(\mathrm{~d})$ one can write $m_{\alpha, F}(x)=h\left(x^{p^{m}}\right)$ for some non-negative integer m and an irreducible separable polynomial $h \in F[x]$ (remark: the case $m=0$ is coming if $m_{\alpha, F}(x)$ is separable,
and when $m_{\alpha, F}(x)$ is non-separable this is when we are applying Problem $3(\mathrm{~d})$). If one writes $h(x)=\sum_{i=0}^{n} a_{i} x^{i}$, then using that ϕ is surjective one can write $a_{i}=b_{i}^{p^{m}}$ for some $b_{i} \in F$. But then one sees that

$$
m_{\alpha, F}(x)=h\left(x^{p^{m}}\right)=\sum_{i=0}^{n} b_{i}^{p^{m}} x^{p^{m}}=\left(\sum_{i=0}^{n} b_{i} x^{i}\right)^{p^{m}}
$$

Unless $m=0$ this contradicts the fact that $m_{\alpha, F}(x)$ is irreducible, so we deduce $m=0$ and then $m_{\alpha, F}(x)=h(x)$ is separable.

2. Week 2

1. Suppose F is a field of characteristic zero and it contains an element ζ such that the multiplicative order of ζ is n. For $a \in F, \sqrt[n]{a}$ denotes a zero of $x^{n}-a$. Let $\left(F^{\times}\right)^{n}:=\left\{a^{n} \mid a \in F^{\times}\right\}$. Notice that $\left(F^{\times}\right)^{n}$ is a subgroup of F^{\times}.
(a) Prove that $F[\sqrt[n]{a}] / F$ is a Galois extension for every $a \in F^{\times}$.

Solution. The field $F[\sqrt[n]{a}]$ is the splitting field of $x^{n}-a$ over F : the polynomial splits in $F[\sqrt[n]{a}]$ with roots $\sqrt[n]{a}, \zeta \sqrt[n]{a}, \ldots, \zeta^{n-1} \sqrt[n]{a}$ (these are all elements of $F[\sqrt[n]{a}]$ because $\zeta \in F$ by hypothesis), and one can see that $F[\sqrt[n]{a}]=F\left[\sqrt[n]{a}, \zeta \sqrt[n]{a}, \ldots, \zeta^{n-1} \sqrt[n]{a}\right]$. These n roots of $x^{n}-a$ are distinct (because ζ has order n), so in particular $x^{n}-a$ is separable. Thus $F[\sqrt[n]{a}]$ is the splitting field of a separable polynomial over F.
(b) Prove that $f_{a}: \operatorname{Aut}_{F}(F[\sqrt[n]{a}]) \rightarrow\left\langle\zeta_{n}\right\rangle, f_{a}(\sigma):=\frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}}$ is an injective group homomorphism.

Solution. First we show it is a homomorphism: we know for some i and some j we have $\sigma(\sqrt[n]{a})=\zeta^{i} \sqrt[n]{a}$ and $\tau(\sqrt[n]{a})=\zeta^{j} \sqrt[n]{a}$. One then has $(\sigma \circ \tau)(\sqrt[n]{a})=\zeta^{i+j} \sqrt[n]{a}$, and as a result one has

$$
f_{a}(\sigma \circ \tau)=\frac{(\sigma \circ \tau)(\sqrt[n]{a})}{\sqrt[n]{a}}=\zeta^{i+j}=\zeta^{i} \zeta^{j}=\frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}} \frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}}=f_{a}(\sigma) f_{a}(\tau)
$$

If one has $f_{a}(\sigma)=1$ then one sees that $\sigma(\sqrt[n]{a})=\sqrt[n]{a}$, but then $\sigma=\mathrm{id}$.
(c) Use the previous part to deduce that $\operatorname{Aut}_{F}(F[\sqrt[n]{a}])$ is cyclic. Suppose σ_{0} generates $\operatorname{Aut}_{F}(F[\sqrt[n]{a}])$, and prove that for $\alpha \in F[\sqrt[n]{a}]$, we have $\sigma_{0}(\alpha)=\alpha$ if and only if $\alpha \in F$.
Solution. Part (b) tells us that $\operatorname{Aut}_{F}(F[\sqrt[n]{a}])$ is isomorphic to a subgroup of a cyclic group, hence is cyclic itself. For σ_{0} as in the statement, one can verify that $\sigma_{0}(\alpha)=\alpha$ if and only if $\sigma(\alpha)=\alpha$ for all $\sigma \in \operatorname{Aut}_{F}(F[\sqrt[n]{a}])$ (for the forward direction one simply writes σ as a power of $\left.\sigma_{0}\right)$. Then recalling that $F=\operatorname{Fix}\left(\operatorname{Aut}_{F}(F[\sqrt[n]{a}])\right)$ (this is a consequence of part (a)), one has

$$
\sigma_{0}(\alpha)=\alpha \Longleftrightarrow \sigma(\alpha)=\alpha \text { for all } \sigma \in \operatorname{Aut}_{F}(F[\sqrt[n]{a}]) \Longleftrightarrow \alpha \in F
$$

2. Suppose F is a field of characteristic zero and it contains an element ζ such that the multiplicative order of ζ is n. For $a \in F, \sqrt[n]{a}$ denotes a zero of $x^{n}-a$.
(a) Suppose $\operatorname{Aut}_{F}(F[\sqrt[n]{a}])=\left\langle\sigma_{0}\right\rangle$. Prove that for every positive integer d we have

$$
\sigma_{0}^{d}=\mathrm{id} \Longleftrightarrow\left(a\left(F^{\times}\right)^{n}\right)^{d}=\left(F^{\times}\right)^{n} \text { in } F^{\times} /\left(F^{\times}\right)^{n}
$$

Solution. Using parts (b) and (c) of Problem 1 (where applicable) one has

$$
\begin{aligned}
\sigma_{0}^{d}=\mathrm{id} & \Longleftrightarrow f_{a}\left(\sigma_{0}^{d}\right)=\sigma_{0}^{d} \Longleftrightarrow f_{a}\left(\sigma_{0}\right)^{d}=1 \\
& \Longleftrightarrow\left(\frac{\sigma_{0}(\sqrt[n]{a})}{\sqrt[n]{a}}\right)^{d}=1 \Longleftrightarrow \sigma_{0}\left(\sqrt[n]{a}^{d}\right)=\sqrt[n]{a}^{d} \\
& \Longleftrightarrow \sqrt[n]{a}^{d} \in F \stackrel{(\star)}{\Longleftrightarrow a^{d} \in\left(F^{\times}\right)^{n}} \\
& \Longleftrightarrow a^{d}\left(F^{\times}\right)^{n}=\left(F^{\times}\right)^{n} \Longleftrightarrow\left(a\left(F^{\times}\right)^{n}\right)^{d}=\left(F^{\times}\right)^{n} .
\end{aligned}
$$

[Remark: the \Longleftrightarrow labeled with a (\star) requires a line or two of justification, but it is not difficult to verify using the fact that F contains all nth roots of 1.]
(b) Prove that $\operatorname{Aut}_{F}(F[\sqrt[n]{a}]) \simeq\left\langle a\left(F^{\times}\right)^{n}\right\rangle$, where $\left\langle a\left(F^{\times}\right)^{n}\right\rangle$ is the cyclic subgroup of $F^{\times} /\left(F^{\times}\right)^{n}$ which is generated by $a\left(F^{\times}\right)^{n}$.
Solution. Using part (b) one sees that $o\left(\sigma_{0}\right)=o\left(a\left(F^{\times}\right)^{n}\right)$, and then because $\operatorname{Aut}_{F}(F[\sqrt[n]{a}])=$ $\left\langle\sigma_{0}\right\rangle$, one sees that the two groups in question are cyclic of equal order, hence isomorphic.
3. Suppose F is a field of characteristic zero and it contains an element ζ such that the multiplicative order of ζ is n. For $a \in F, \sqrt[n]{a}$ denotes a zero of $x^{n}-a$. Prove that for $a_{1}, a_{2} \in F^{\times}$we have $F\left[\sqrt[n]{a_{1}}\right]=F\left[\sqrt[n]{a_{2}}\right]$ if and only if $\left\langle a_{1}\left(F^{\times}\right)^{n}\right\rangle=\left\langle a_{2}\left(F^{\times}\right)^{n}\right\rangle$.

Solution. First suppose $\left\langle a_{1}\left(F^{\times}\right)^{n}\right\rangle=\left\langle a_{2}\left(F^{\times}\right)^{n}\right\rangle$. Then we can write $a_{1}\left(F^{\times}\right)^{n}=\left(a_{2}\left(F^{\times}\right)^{n}\right)^{i}$ for some i, and as a result one has $a_{1}=a_{2}^{i} b^{n}$ for some $b \in F$. As a result one has $\sqrt[n]{a_{1}}=\sqrt[n]{a_{2}} \zeta^{j} b$ for some j, and in particular $\sqrt[n]{a_{1}} \in F\left[\sqrt[n]{a_{2}}\right]$ so $F\left[\sqrt[n]{a_{1}}\right] \subseteq F\left[\sqrt[n]{a_{2}}\right]$. The reverse inclusion is completely symmetric.

Now suppose $F\left[\sqrt[n]{a_{1}}\right]=F\left[\sqrt[n]{a_{2}}\right]$. Consider the function $f_{a_{1}}$ and $f_{a_{2}}$ as in Problem 1(b). Because these are injective homomorphisms one has

$$
\left|\operatorname{Im}\left(f_{a_{1}}\right)\right|=\left|\operatorname{Aut}_{F}\left(F\left[\sqrt[n]{a_{1}}\right]\right)\right|=\left|\operatorname{Aut}_{F}\left(F\left[\sqrt[n]{a_{2}}\right]\right)\right|=\left|\operatorname{Im}\left(f_{a_{2}}\right)\right|
$$

Thus these two images are subgroups of $\langle\zeta\rangle$ of equal size, hence are equal. If we let σ_{0} denote a generator of the automorphism group, one sees that $f_{a_{2}}\left(\sigma_{0}\right)$ generates $\operatorname{Im}\left(f_{a_{2}}\right)$, so as a result one can write $f_{a_{1}}\left(\sigma_{0}\right)=\left(f_{a_{2}}\left(\sigma_{0}\right)\right)^{i}$ for some i. Using the definition of f_{a} and rewriting, one has $\sigma_{0}\left({\sqrt[n]{a_{1}}}_{/ \sqrt[n]{a_{2}}}{ }^{i}\right)=\sqrt[n]{a_{1}} /{\sqrt[n]{a_{2}}}^{i}$, and then applying Problem 1(c) one sees that $\sqrt[n]{a_{1}} / \sqrt[n]{a_{2}} i \in F$. Calling this element b one has $\sqrt[n]{a_{1}}={\sqrt[n]{a_{2}}}^{i} b$ and then $a_{1}=a_{2}^{i} b^{n}$. In terms of cosets then we see that $a_{1}\left(F^{\times}\right)^{n}=\left(a_{2}\left(F^{\times}\right)^{n}\right)^{i}$, so $\left\langle a_{1}\left(F^{\times}\right)^{n}\right\rangle \subseteq\left\langle a_{2}\left(F^{\times}\right)^{n}\right\rangle$. The reverse inclusion is symmetric.
4. Suppose F is a field and p is a prime with the following property: if E / F is a finite field extension and $E \neq F$, then p divides $[E: F]$.
(a) Prove that if E / F is a finite Galois extension, then $[E: F]=p^{n}$ for some n.

Solution. Let P be a p-Sylow subgroup of $\operatorname{Aut}_{F}(E)$. Then by the fundamental theorem of Galois theory, $\operatorname{Fix}(P)$ is an intermediate subfield of E / F with $[\operatorname{Fix}(P): F]=\left[\operatorname{Aut}_{F}(E): P\right]$, which is coprime to p by definition of Sylow subgroup. But by our original hypothesis, if $p \nmid[\operatorname{Fix}(P): F]$ then $\operatorname{Fix}(P)=F$. As a result of the fundamental theorem one then has $P=\operatorname{Aut}_{F}(E)$, and in particular $[E: F]=\left|\operatorname{Aut}_{F}(E)\right|$ is a power of p.
(b) Prove that if E / F is a finite separable extension, then $[E: F]=p^{n}$ for some integer n.

Solution. Let L be a normal closure of E / F. Because E / F is separable, L / F is Galois. Thus part (a) tells us that $[L: F]$ is a power of p, and then by tower law one has $[E: F]$ divides $[L: F]$, hence $[E: F]$ is a power of p.
(c) Suppose there is a finite non-separable extension of F. Prove that $\operatorname{char}(F)=p$.

Solution. Let $\ell:=\operatorname{char}(F)$. If there exists a finite non-separable extension of F, then Problem $5(\mathrm{~b})$ of Homework 1 tells us that $\phi: F \rightarrow F, \phi(a)=a^{\ell}$ cannot be surjective. If we take some $t \in F \backslash F^{\ell}$ then we let E be a splitting field of $x^{\ell}-t$ over F and $\alpha \in E$ a root of $x^{\ell}-t$. One necessarily has $m_{\alpha, F}(x) \mid x^{\ell}-t$, and $x^{\ell}-t=(x-\alpha)^{\ell}$ in $E[x]$ so one has $m_{\alpha, F}(x)=(x-\alpha)^{k}$ for some $2 \leq k \leq \ell$ (notice one cannot have $k=1$ because this would imply that $\alpha \in F$, contradicting the fact that $t \notin F^{\ell}$). By examining the constant term one sees that $\alpha^{k} \in F$. If we rephrase this as the statement $\left(\alpha F^{\times}\right)^{k}=F^{\times}$in the group E^{\times} / F^{\times}, we can use group theory: one has $\alpha^{\ell}=t \in F$, so $\left(\alpha F^{\times}\right)^{\ell}=F^{\times}$, and thus the order of αF^{\times}divides ℓ. But ℓ is prime and $\alpha \notin F^{\times}$, so this order is exactly ℓ. Now from the statement $\left(\alpha F^{\times}\right)^{k}=F^{\times}$one sees that the order ℓ must divide k. But $k \leq \ell$ so we find $k=\ell$, and thus $m_{\alpha, F}(x)=(x-\alpha)^{\ell}=x^{\ell}-t$, and in particular $x^{\ell}-t$ is irreducible in $F[x]$. As a result we see that E / F is a finite extension of degree ℓ, and then by the original hypothesis one has $p \mid \ell$, so because these are primes we find $p=\ell=\operatorname{char}(F)$.

3. Week 3

1. (a) Suppose E / F is a field extension and $K \in \operatorname{Int}(E / F)$. Prove that E / F is purely inseparable if and only if E / K and K / F are purely inseparable.

Solution. The statement is trivial in characteristic 0 , so suppose $\operatorname{char}(F)=p>0$. Then E / F is purely inseparable if and only if for every $\alpha \in E$ there exists some $k \geq 0$ such that $\alpha^{p^{k}} \in F$.
First suppose E / F is purely inseparable. If $\alpha \in K$, then $\alpha \in E$ so there exists $k \geq 0$ such that $\alpha^{p^{k}} \in F$, which shows K / F is purely inseparable. In addition if $\alpha \in E$, then taking $k \geq 0$ so that $\alpha^{p^{k}} \in F$, we also have $\alpha^{p^{k}} \in K$, so E / K is purely inseparable.

Conversely suppose E / K and K / F are purely inseparable. If $\alpha \in E$ then because E / K is purely inseparable we can find $k \geq 0$ with $\alpha^{p^{k}} \in K$. Then because K / F is purely inseparable we can find $\ell \geq 0$ such that $\left(\alpha^{p^{k}}\right)^{p^{\ell}} \in F$. Thus $\alpha^{p^{k+\ell}} \in F$ and we see that E / F is purely inseparable.
(b) Suppose E / F is a finite purely inseparable extension. Prove that $[E: F]=p^{m}$ for some integer m where $p=\operatorname{char}(F)$.

Outline of solution. First consider the case that the extension is simple, say $E=F[\alpha]$. From our equivalent conditions for an extension to be purely inseparable, we know that $m_{\alpha, F}(x)=x^{p^{k}}-a$ for some $k \geq 0$ and $a \in F$. As a result one has

$$
[E: F]=[F[\alpha]: F]=\operatorname{deg}\left(m_{\alpha, F}\right)=p^{k}
$$

which gives the result in this special case.
For the general case, write $E=F\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ and consider the tower

$$
F \subseteq F\left[\alpha_{1}\right] \subseteq F\left[\alpha_{1}, \alpha_{2}\right] \subseteq \cdots \subseteq F\left[\alpha_{1}, \ldots, \alpha_{n-1}\right] \subseteq F\left[\alpha_{1}, \ldots, \alpha_{n}\right]=E
$$

At each step of the tower apply the simple case to find $\left[F\left[\alpha_{1}, \ldots, \alpha_{i+1}\right]: F\left[\alpha_{1}, \ldots, \alpha_{i}\right]\right.$ is a power of p (we use part (a) to see that this extension is still purely inseparable). Applying the tower law to the tower one sees $[E: F]$ is a power of p as well.
(c) Suppose F is a field and p is a prime with the following property: if E / F is a finite field extension and $E \neq F$, then p divides $[E: F]$. Prove that $[E: F]=p^{n}$ for some n.

Solution. If E / F is separable then this is exactly Homework 2 Problem $4(\mathrm{~b})$. If E / F is nonseparable we can apply part (c) to find $\operatorname{char}(F)=p$. In this case consider the separable closure $E_{\text {sep }}$ of F in E. We know that $E / E_{\text {sep }}$ is a purely inseparable extension and $E_{\text {sep }} / F$ is a separable extension. From Homework 2 Problem $4(\mathrm{~b})$ we have that $\left[E_{\mathrm{sep}}: F\right]$ is a power of p,
and from part (b) above we have that $\left[E: E_{\text {sep }}\right]$ is a power of p. Using tower law we conclude the result.
2. Suppose F is a field of characteristic $p>2$. Let $F(t):=\left\{\left.\frac{f(t)}{g(t)} \right\rvert\, f, g \in F[t]\right\}$ be the field of ratioanl functions. Suppose $\sigma, \tau \in \operatorname{Aut}_{F}(F(t))$ are such that $\sigma(t):=t+1$ and $\tau(t)=-t$. Let H be the subgroup generated by σ and τ.
(a) Prove that $\operatorname{Fix}(\tau)=F\left(t^{2}\right)$ and $\operatorname{Fix}(\sigma)=F\left(t^{p}-t\right)$.

Solution. Recall we have seen in problem session that if $u=\frac{f(t)}{g(t)}$ with $f, g \in F[t]$ and $\operatorname{gcd}(f, g)=$ 1, one has that $F(t) / F(u)$ is a finite extension with $[F(t): F(u)]=\max \{\operatorname{deg}(f), \operatorname{deg}(g)\}$.
Clearly one has $\operatorname{Fix}(\tau) \subseteq F\left(t^{2}\right)$. Writing $\operatorname{Fix}(\tau)=\operatorname{Fix}(\langle\tau\rangle)$ and using Theorem 26.1.3 one has

$$
[F(t): \operatorname{Fix}(\tau)]=[F(t): \operatorname{Fix}(\langle\tau\rangle)]=\left|\operatorname{Aut}_{\operatorname{Fix}(\langle\tau\rangle)}(F(t))\right|=|\langle\tau\rangle|=2
$$

Using the fact stated above (or via more elementary methods), one also has $\left[F(t): F\left(t^{2}\right)\right]=2$.
Now we can consider the tower applied to $\operatorname{Fix}(\tau) \subseteq F\left(t^{2}\right) \subseteq F(t)$, and get

$$
2=[F(t): \operatorname{Fix}(\tau)]=\left[F(t): F\left(t^{2}\right)\right]\left[F\left(t^{2}\right): \operatorname{Fix}(\tau)\right]=2\left[F\left(t^{2}\right): \operatorname{Fix}(\tau)\right]
$$

and cancelling we find $\left[F\left(t^{2}\right): \operatorname{Fix}(\tau)\right]=1$, so $F\left(t^{2}\right)=\operatorname{Fix}(\tau)$.
For the other equality we apply similar techniques: one can easily verify $F\left(t^{p}-t\right) \subseteq \operatorname{Fix}(\sigma)$, then use a similar chain of equalities to find $[F(t): \operatorname{Fix}(\sigma)]=o(\sigma)=p$. Then apply our fact above to find $\left[F(t): F\left(t^{p}-t\right)\right]=p$, and conclude $F\left(t^{p}-t\right)=\operatorname{Fix}(\sigma)$ using tower law.
(b) Prove that $\operatorname{Fix}(H)=F\left(\left(t^{p}-t\right)^{2}\right)$.

Outline of solution. One has inclusions $F\left(\left(t^{p}-t\right)^{2}\right) \subseteq \operatorname{Fix}(H) \subseteq \operatorname{Fix}(\tau) \cap \operatorname{Fix}(\sigma)=F\left(t^{2}\right) \cap$ $F\left(t^{p}-t\right)$. We can use the same fact as before to see that $\left[F(t): F\left(\left(t^{p}-t\right)^{2}\right)\right]=2 p$, so by the same methods used in (a) it suffices to see that $\left[F(t): F\left(t^{2}\right) \cap F\left(t^{p}-t\right)\right]=2 p$. In fact, the inclusions above (along with tower law) gives us $\left[F(t): F\left(t^{2}\right) \cap F\left(t^{p}-t\right)\right] \leq 2 p$, so we just need to see the reverse inequality. But considering the diagram of extensions

one sees with tower law that 2 and p both divide $\left[F(t): F\left(\left(t^{p}-t\right)^{2}\right]\right.$, and because p is odd then we see that $2 p$ divides this quantity as well, giving the desired inequality.
(c) Prove that $F\left(t^{2}\right) / F\left(\left(t^{p}-t\right)^{2}\right)$ is not a normal extension.

Solution. Because $F\left(\left(t^{p}-t\right)^{2}\right)=\operatorname{Fix}(H)$ we can apply Theorem 26.1.3 to find $F(t) / F\left(\left(t^{p}-t\right)^{2}\right)$ is Galois with $\operatorname{Aut}_{F\left(\left(t^{p}-t\right)^{2}\right)}(F(t))=H$. Because $F\left(t^{2}\right)=\operatorname{Fix}(\tau)=\operatorname{Fix}(\langle\tau\rangle)$, we have by the fundamental theorem of Galois theory that $F\left(t^{2}\right) / F\left(\left(t^{p}-t\right)^{2}\right)$ is normal if and only if $\langle\tau\rangle$ is a normal subgroup of H. But one can directly verify that $\sigma \tau \sigma^{-1} \notin\langle\tau\rangle$, so we conclude this extension is not normal.
3. Suppose E / F is a finite Galois extension and $f \in F[x] \backslash F$ is a separable polynomial. Suppose L is a splitting field of f over E. Prove that L / F is a Galois extension.

Solution. Theorem 29.1 .4 says that L / F is a normal extension, so it suffices to prove separability. Notice f is also a separable polynomial of $E[x]$, because any irreducible factor as an element of $E[x]$
divides an irreducible factor from $F[x]$, and we know each of these has distinct roots in a splitting field. Thus L / E is separable as it is the splitting field of a separable polynomial over E. We have by hypothesis that E / F is separable, and then L / E and E / F both separable implies L / F separable as well.

Alternatively, if E is a splitting field of a separable polynomial $g \in F[x] \backslash F$ over F, then one can directly prove that L is the splitting field of $f(x) g(x)$ over F, and $f(x) g(x)$ is a separable polynomial because both $f(x)$ and $g(x)$ are.
4. Suppose p is prime, $\sigma=(0,1, \ldots, p-1)$ in the symmetric group S_{p} of the set $\{0,1, \ldots, p-1\}$ and $\tau=(0, a) \in S_{p}$ for some integer $a \in[1, p-1]$. Let H_{a} be the group generated by σ and τ.
(a) Prove that $H_{1}=S_{p}$.

Solution. Recall every element of S_{p} can be written as a product of transpositions, so it suffices to show that any transposition (i, j) is in H_{1}. Let $\gamma:=\tau \sigma=(0,1)(0,1, \ldots, p-1)=(1, \ldots, p-1)$, which is in H_{1} because τ and σ are. Then for each $i \in[1, p-2]$ one has $(i, i+1)=\gamma^{i} \circ \tau \circ \gamma^{-i} \in H_{1}$. From this we see that $(1,2)(0,1)(1,2)^{-1}=(0,2)$ is in H_{1}. Then $(2,3)(0,2)(2,3)^{-1}=(0,3)$ is also in H_{1}, and inductively we find that $(i-1, i)(0, i-1)(i-1, i)=(0, i)$ is in H_{1} for each $i \in[1, p-1]$ Finally for any i, j we deduce that $(i, j)=(0, i)(0, j)$ is inside H_{1} as well. Thus we have shown all transpositions are in H_{1} and we are done.
(b) Prove that $H_{a}=S_{p}$.

Solution. Notice for any integer i that $\sigma^{i}(0, a) \sigma^{-i}=(a, a+i)$ is an element of H_{a}, where we consider addition modulo p. Applying this fact for $i=k a$, this says that $(k a,(k+1) a)$ is inside H_{a} for any integer k. Notice then $(0,2 a)=(a, 2 a)(0, a)(a, 2 a)^{-1}$ is inside H_{a}, and continuing inductively we find that $(0, k a)=((k-1) a, k a)(0,(k-1) a)((k-1) a, k a)^{-1}$ is inside H_{a} for any k. In particular because $a \in[1, p-1]$ we can choose some k for which $k a=1$ in \mathbb{Z}_{p}, and then this says that $(0,1) \in H_{a}$. But then using part (a) we have inclusions

$$
S_{p}=H_{1}=\langle\sigma,(0,1)\rangle \subseteq H_{a} \subseteq S_{p}
$$

and then we deduce all the above groups are equal, so in particular $H_{a}=S_{p}$.
5. Suppose $p>4$ is prime, and $f \in \mathbb{Q}[x]$ is an irreducible polynomial of degree p which has two non-real complex zeros and $p-2$ real zeros. Let $E \subseteq \mathbb{C}$ be a splitting field of f over \mathbb{Q}.
(a) Prove that $\operatorname{Aut}_{\mathbb{Q}}(E) \simeq S_{p}$.

See Theorem 30.3.3 in the notes.
(b) Prove that f is not solvable by radicals over \mathbb{Q}.

See Theorem 30.3.3 in the notes.

4. Week 4

1. Suppose L / F is an algebraic extension. Let

$$
F_{\mathrm{ab}}:=\left\{\alpha \in L \mid F[\alpha] / F \text { is Galois, and } \operatorname{Aut}_{F}(F[\alpha]) \text { is abelian }\right\} .
$$

Prove that F_{ab} / F is a Galois extension. Moreover prove that $\operatorname{Aut}_{F}\left(F_{\mathrm{ab}}\right)$ is abelian if L / F is a finite extension.

Outline of solution. Suppose $\alpha, \beta \in F_{\mathrm{ab}}$. Because $F[\alpha] / F$ is Galois there is some separable polynomial $f \in F[x] \backslash F$ such that $F[\alpha]$ is a splitting field of f over F, and similarly there is some separable $g \in F[x] \backslash F$ such that $F[\beta]$ is a splitting field of g over F. One can verify then that $F[\alpha, \beta]$ is a splitting field of the (separable) polynomial $f(x) g(x)$ over F, so $F[\alpha, \beta] / F$ is Galois. Next, we
see that we have a homomorphism

$$
\operatorname{Aut}_{F}(F[\alpha, \beta]) \rightarrow \operatorname{Aut}_{F}(F[\alpha]) \times \operatorname{Aut}_{F}(F[\beta]), \quad \sigma \mapsto\left(\left.\sigma\right|_{F[\alpha]},\left.\sigma\right|_{F[\beta]}\right),
$$

where we note these restrictions are well-defined because $F[\alpha]$ and $F[\beta$ are both normal over F. It is easy to see this homomorphism is also injective, and thus the fact that $\operatorname{Aut}_{F}(F[\alpha])$ and $\operatorname{Aut}_{F}(F[\beta])$ are both abelian implies $\operatorname{Aut}_{F}(F[\alpha, \beta])$ is abelian as well. In particular, by the fundamental theorem of Galois theory this implies that $F[\alpha-\beta]$ is Galois over F, because the corresponding subgroup of $\operatorname{Aut}_{F}(F[\alpha, \beta])$ is automatically normal. Furthermore, one has a surjective map (see Theorem 23.1.1)

$$
\operatorname{Aut}_{F}(F[\alpha, \beta]) \rightarrow \operatorname{Aut}_{F}(F[\alpha-\beta]),\left.\quad \sigma \mapsto \sigma\right|_{F[\alpha-\beta]}
$$

and thus the fact that $\operatorname{Aut}_{F}(F[\alpha, \beta])$ is abelian implies the same for $\operatorname{Aut}_{F}(F[\alpha-\beta])$ and then we see that $\alpha-\beta \in F_{\mathrm{ab}}$. Similarly one has $\alpha \beta$ and (when $\beta \neq 0$) α / β are both in F_{ab} / F as well, so F_{ab} is a field.

If $\alpha \in F_{\text {ab }}$ then $F[\alpha] / F$ being Galois in particular means α is separable over F, so $F_{\text {ab }}$ is separable. Furthermore, one has that $m_{\alpha, F}$ splits into linear factors in $F[\alpha]$, and hence the same is true inside F_{ab}, so F_{ab} / F is normal as well. This completes the proof that F_{ab} / F is a Galois extension.

For the final part of the proof, if L / F is finite then F_{ab} / F is finite as well, and because it is separable (what we have just shown above) the Primitive Element Theorem (Theorem 27.2.2) implies that $F_{\mathrm{ab}}=F[\alpha]$ for some $\alpha \in F_{\mathrm{ab}}$; but then by definition of F_{ab} we have that $\operatorname{Aut}_{F}\left(F_{\mathrm{ab}}\right)=$ $\operatorname{Aut}_{F}(F[\alpha])$ is abelian.
2. Suppose E / F is a finite normal extension, and

$$
E_{\text {sep }}:=\left\{\alpha \in E \mid m_{\alpha, F} \text { is separable }\right\} .
$$

(a) Prove that $E_{\text {sep }} / F$ is a Galois extension.

Solution. We have seen in class that $E_{\text {sep }}$ is a field and $E_{\text {sep }} / F$ is a separable extension by definition, so we need to show normality. Suppose $\alpha \in E_{\text {sep }}$. We want to see that $m_{\alpha, F}$ splits into linear factors in $E_{\text {sep }}$. Because E / F is normal we have can split $m_{\alpha, F}$ into linear factors in E, say $m_{\alpha, F}(x)=\prod_{i}\left(x-\beta_{i}\right)$. Then notice that for each i one has $m_{\beta_{i}, F}=m_{\alpha, F}$, so β_{i} is separable over F because α is. But this means $\beta_{i} \in E_{\text {sep }}$ so this gives the conclusion we wanted.
(b) Prove that $r: \operatorname{Aut}_{F}(E) \rightarrow \operatorname{Aut}_{F}\left(E_{\text {sep }}\right), r(\theta):=\left.\theta\right|_{E_{\text {sep }}}$ is a group isomorphism.

Solution. The statement is trivial in characteristic 0 so suppose $\operatorname{char}(F)=p>0$. Surjectivity of r follows from the fact that E / F is normal, see for instance Proposition 23.1.1. For injectivity, suppose $r(\theta)=\mathrm{id}$, so $\theta(\beta)=\beta$ for all $\beta \in E_{\text {sep }}$. Then if $\alpha \in E_{\text {sep }}$ one has $\alpha^{p^{k}} \in E_{\text {sep }}$ for some $k \geq 0$ because $E / E_{\text {sep }}$ is purely inseparable. But then one has $\theta\left(\alpha^{p^{k}}\right)=\alpha^{p^{k}}$, and from this one subtracts and finds that $(\theta(\alpha)-\alpha)^{p^{k}}=0$, which implies $\theta(\alpha)=\alpha$. Thus $\theta=\mathrm{id}$ and this shows r is injective.
(c) Let $K:=\operatorname{Fix}\left(\operatorname{Aut}_{F}(E)\right)$. Prove that $[E: K]=\left[E_{\text {sep }}: F\right], E / K$ is Galois, and K / F is purely inseparable.

Solution. Theorem 26.1.3 immediately implies E / K is Galois with $\operatorname{Aut}_{K}(E)=\operatorname{Aut}_{F}(E)$. Thus we can calculate

$$
[E: K]=\left|\operatorname{Aut}_{K}(E)\right|=\left|\operatorname{Aut}_{F}(E)\right|=\left|\operatorname{Aut}_{F}\left(E_{\text {sep }}\right)\right|=\left[E_{\text {sep }}: F\right] .
$$

To see K / F is purely inseparable we again suppose we are in characteristic p (the characteristic 0 case being trivial) and suppose $\alpha \in K$. Because $\alpha \in E$ we can find $k \geq 0$ such that $\alpha^{p^{k}} \in E_{\text {sep }}$. We will show $\alpha^{p^{k}} \in F$ by showing it is fixed by every $\theta \in \operatorname{Aut}_{F}\left(E_{\text {sep }}\right)$; for any such θ we know
by part (b) that $\theta=\left.\widetilde{\theta}\right|_{E_{\text {sep }}}$ for some $\widetilde{\theta} \in \operatorname{Aut}_{F}(E)$. Then because $\alpha \in K=\operatorname{Fix}\left(\operatorname{Aut}_{F}(E)\right)$ we have

$$
\theta\left(\alpha^{p^{k}}\right)=\widetilde{\theta}\left(\alpha^{p^{k}}\right)=\widetilde{\theta}(\alpha)^{p^{k}}=\alpha^{p^{k}}
$$

We conclude $\alpha^{p^{k}} \in F$ and because $\alpha \in K$ was arbitrary we conclude the result.
3. For a finite extension E / F, we let $[E: F]_{s}:=\left[E_{\text {sep }}: F\right]$. Suppose $K \in \operatorname{Int}(E / F)$.

Let $E_{\mathrm{sep}, K}$ be the separable closure of K in E / K, let $E_{\mathrm{sep}, F}$ be the separable closure of F in E / F, and let $K_{\text {sep }, F}$ be the separable closure of F in K / F.
(a) In the above setting prove that $K_{\mathrm{sep}, F} \subseteq E_{\mathrm{sep}, F} \subseteq E_{\mathrm{sep}, K}$.

Solution. If $\alpha \in K_{\text {sep }, F}$ then $\alpha \in K$ and $m_{\alpha, F}$ is separable in $F[x]$. Because $K \subseteq E$ it is immediate that $\alpha \in E_{\text {sep }, F}$ as well. Now if $\alpha \in E_{\text {sep }, F}$ then $\alpha \in E$ with $m_{\alpha, F}$ separable. One has $m_{\alpha, K} \mid m_{\alpha, F}$ in $K[x]$ so $m_{\alpha, K}$ is separable as well, and thus $\alpha \in E_{\text {sep }, K}$. This shows the desired inclusions.
(b) Argue that there is $\alpha \in E_{\mathrm{sep}, F}$ such that $E_{\mathrm{sep}, F}=K_{\mathrm{sep}, F}[\alpha]$.

Solution. We have that $E_{\text {sep }, F} / F$ is separable by construction. Because $F \subseteq K_{\text {sep }, F} \subseteq E_{\text {sep }, F}$, and the fact that separability satisfies a block-tower phenomena (Theorem 28.2.1) one finds that $E_{\mathrm{sep}, F} / K_{\mathrm{sep}, F}$ is separable, and it is finite because E / F is finite by hypothesis. Thus it follows from the Primitive Element Theorem (Theorem 27.2.2) that $E_{\mathrm{sep}, F}=K_{\mathrm{sep}, F}[\alpha]$ for some $\alpha \in E_{\mathrm{sep}, F}$.
(c) Prove that $E_{\text {sep }, K} / K[\alpha]$ is both separable and purely inseparable. Deduce that $E_{\text {sep }, K}=K[\alpha]$. Solution. By construction $E_{\text {sep }, K} / K$ is separable, and then $E_{\text {sep }, K} / K[\alpha]$ is also separable. On the other hand, recall that $E / E_{\mathrm{sep}, F}$ is purely inseparable. But we have inclusions

$$
E_{\mathrm{sep}, F}=K_{\mathrm{sep}, F}[\alpha] \subseteq K[\alpha] \subseteq E_{\mathrm{sep}, K} \subseteq E
$$

and because we have proved in the previous homework that purely inseparable extensions satisfy a block-tower phenomena we deduce that $E_{\text {sep }, K} / K[\alpha]$ is purely inseparable. The only extensions which are both separable and purely inseparable are trivial extensions, so $E_{\text {sep }, K}=K[\alpha]$.
(d) Prove that $m_{\alpha, K} \mid m_{\alpha, K_{\text {sep }, F}}$ and $m_{\alpha, K_{\text {sep }, F}} \mid m_{\alpha, K}^{q}$ where q is either 1 if $\operatorname{char}(F)=0$ or a power of p if $\operatorname{char}(F)=p>0$. Deduce that $m_{\alpha, K}=m_{\alpha, K_{\text {sep }, F}}$.
Solution. The statement is trivial if $\operatorname{char}(F)=0$ so suppose $\operatorname{char}(F)=p>0$. The fact that $m_{\alpha, K} \mid m_{\alpha, K_{\mathrm{sep}, F}}$ is immediate from $K_{\mathrm{sep}, F} \subseteq K$. On the other hand let's write $m_{\alpha, F}(x)=$ $c_{0}+\cdots+c_{n-1} x^{n-1}+x^{n}$ with $c_{i} \in K$. Because $K / K_{\text {sep }, F}$ is purely inseparable for each i we can find some $m \geq 0$ such that $c_{i}^{p^{m_{i}}} \in K_{\text {sep }, F}$. If we take $m=\operatorname{lcm}\left(m_{i}\right)$ and $q=p^{m}$ then $c_{i}^{q} \in K_{\text {sep }, F}$ for each i. As a result we have $m_{\alpha, K}^{q} \in K_{\text {sep }, F}[x]$, and this polynomial has α as a root so we deduce that $m_{\alpha, K_{\text {sep }, F}} \mid m_{\alpha, K}^{q}$.
For the second claim notice that $m_{\alpha, K_{\text {sep }, F}}$ and $m_{\alpha, K}$ are both separable, and by the facts proved above the two polynomials have exactly the same roots (take in some splitting field). Thus one concludes that $m_{\alpha, K}=m_{\alpha, K_{\text {sep }, F}}$.
(e) Prove that $[E: F]_{s}=[E: K]_{s}[K: F]_{s}$.

Solution. Using part (b) we calculate

$$
[E: F]_{s}=\left[E_{\mathrm{sep}, F}: F\right]=\left[K_{\mathrm{sep}, F}[\alpha]: F\right]=\left[K_{\mathrm{sep}, F}[\alpha]: K_{\mathrm{sep}, F}\right]\left[K_{\mathrm{sep}, F}: F\right]
$$

Now we use parts (c) and (d) to calculate
$\left[K_{\mathrm{sep}, F}[\alpha]: K_{\mathrm{sep}, F}\right]=\operatorname{deg}\left(m_{\alpha, K_{\mathrm{sep}, F}}\right)=\operatorname{deg}\left(m_{\alpha, K}\right)=[K[\alpha]: K]=\left[E_{\mathrm{sep}, K}: K\right]=[E: K]_{s}$.

Because $\left[K_{\mathrm{sep}, F}: F\right]=[K: F]_{s}$, returning to the first line we get the result.
4. Suppose F is a field, $L:=F\left(x_{1}, \ldots, x_{n}\right)$ is the field of fractions of $F\left[x_{1}, \ldots, x_{n}\right]$. For $\sigma \in S_{n}$ and $f \in L$, let $T_{\sigma}(f)=f\left(x_{\sigma^{-1}(1)}, \ldots, x_{\sigma^{-1}(n)}\right)$.
(a) Prove that $T: S_{n} \rightarrow \operatorname{Aut}_{F}(L),(T(\sigma))(f):=T_{\sigma}(f)$ is an injective group homomorphism.

Solution. One needs to show that $T_{\sigma \circ \tau}=T_{\sigma} \circ T_{\tau}$ for $\sigma, \tau \in S_{n}$. We calculate for $f \in L$

$$
\begin{aligned}
T_{\sigma}\left(T_{\tau}(f)\right) & =T_{\tau}(f)\left(x_{\sigma^{-1}(1)}, \ldots, x_{\sigma^{-1}(n)}\right)=f\left(x_{\tau^{-1}\left(\sigma^{-1}(1)\right)}, \ldots, x_{\tau^{-1}\left(\sigma^{-1}(n)\right)}\right) \\
& =f\left(x_{(\sigma \circ \tau)^{-1}(1)}, \ldots, x_{(\sigma \circ \tau)^{-1}(n)}\right)=T_{\sigma \circ \tau}(f) .
\end{aligned}
$$

This shows T is a homomorphism. To see it is injective, suppose $T(\sigma)=$ id, i.e. $T_{\sigma}(f)=f$ for all f. Taking $f=x_{i}$ this says that $x_{\sigma^{-1}(i)}=x_{i}$, so $\sigma^{-1}(i)=i$ for each i which implies $\sigma=\mathrm{id}$.
(b) Let $K=\operatorname{Fix}\left(T\left(S_{n}\right)\right)$. Elements of K are called symmetric functions. Let

$$
\left(t-x_{1}\right) \cdots\left(t-x_{n}\right)=t^{n}-s_{1} t^{n-1}+s_{2} t^{n-2}-\cdots+(-1)^{n} s_{n}
$$

Let $E:=F\left(s_{1}, \ldots, s_{n}\right)$. Prove that L is a splitting field of $t^{n}-s_{1} t^{n-1}+\cdots+(-1)^{n} s_{n}$ over E. Deduce that $[L: E] \leq n$!.
Solution. Notice that the x_{i} are algebraic over E by construction, and by construction the polynomial in question splits in L. The former, in particular, implies that $E\left(x_{1}, \ldots, x_{n}\right)=$ $E\left[x_{1}, \ldots, x_{n}\right]$, and we find that

$$
L=F\left(x_{1}, \ldots, x_{n}\right) \subseteq E\left(x_{1}, \ldots, x_{n}\right) \subseteq E\left[x_{1}, \ldots, x_{n}\right] \subseteq L
$$

Thus one has equality all across the above inclusions, so in particular $L=E\left[x_{1}, \ldots, x_{n}\right]$ and so L is the splitting field of $t^{n}-s_{1} t^{n-1}+\cdots+(-1)^{n} s_{n}$ over E. The second claim follows the fact L is the splitting field of a degree n polynomial over E.
(c) Prove that $K=E$.

Solution. The inclusion $E \subseteq K$ is clear. But because $K=\operatorname{Fix}\left(T\left(S_{n}\right)\right)$ we know that L / K is Galois with $\operatorname{Aut}_{K}(L)=T\left(S_{n}\right)$, and in particular $[L: K]=\left|T\left(S_{n}\right)\right|=\left|S_{n}\right|=n$!. Using tower law we see that $[L: E]=[L: K][K: E]=n![K: E]$, and then the fact that $[L: E] \leq n$! by part (b) implies $[K: E]=1$, so $K=E$.
(d) For $f \in L$, let $G(f):=\left\{\sigma \in S_{n} \mid T_{\sigma}(f)=f\right\}$. Prove that $\operatorname{Fix}(T(G(f)))=K[f]$.

Solution. We calculate

$$
\begin{aligned}
T(G(f)) & =\left\{T_{\sigma} \mid \sigma \in G(f)\right\}=\left\{T_{\sigma} \mid T_{\sigma}(f)=f\right\} \\
& =\left\{\theta \in T\left(S_{n}\right) \mid \theta(f)=f\right\}=\left\{\theta \in \operatorname{Aut}_{K}(L) \mid \theta(f)=f\right\} \\
& =\operatorname{Aut}_{K[f]}(L)
\end{aligned}
$$

Now the result follows from the fundamental theorem of Galois theory.
(e) Prove that $G(f) \subseteq G(g)$ for $f, g \in L$ if and only if there is $\theta \in K[t]$ such that $g=\theta(f)$.

Solution. By fundamental theorem of Galois theory and part (d) one has

$$
\begin{aligned}
G(f) \subseteq G(g) & \Longleftrightarrow \operatorname{Fix}(T(G(g))) \subseteq \operatorname{Fix}(T(G(f))) \\
& \Longleftrightarrow K[g] \subseteq K[f] \\
& \Longleftrightarrow g \in K[f] \Longleftrightarrow \text { there exists } \theta \in K[t] \text { such that } g=\theta(f)
\end{aligned}
$$

5. Week 5

1. Suppose L / E is a field extension and L is algebraically closed. Suppose E is the algbebraic closure of F in L. Prove that E is algebraically closed.

Solution. Suppose $f \in E[x] \backslash E$. Then $f \in L[x] \backslash L$ so because L is algebraically closed there is some zero $\alpha \in L$ of f. We claim that $\alpha \in E$: we have that α is algebraic over E, so $E[\alpha] / E$ is algebraic, and also E / F is algebraic, so $E[\alpha] / F$ is also algebraic and thus the element α is algebraic over F, but then by definition of E this means that $\alpha \in E$.
2. Suppose E / F is an algebraic extension and every $f \in F[x] \backslash F$ can be decomposed into linear factors in $E[x]$. Prove that E is algebraically closed.

Solution. Suppose L / E is an algebraic extension; we will show that $L=E$. Because L / E and E / F are both algebraic, L / F is also algebraic. Thus if $\alpha \in L$ then it is algebraic over F so $m_{\alpha, F} \in F[x]$ exists and by assumption decomposes into linear factors in $E[x]$. Because α is a zero of $m_{\alpha, F}$ this implies $\alpha \in E$, proving $L=E$.
3. Suppose F is a perfect field, and \bar{F} is an algebraic closure of F. Let

$$
\operatorname{Int}_{\mathrm{f}, \mathrm{n}}(\bar{F} / F)=\{E \in \operatorname{Int}(\bar{F} / F) \mid E / F \text { is a finite normal extension }\}
$$

(a) For $E \in \operatorname{Int}_{\mathrm{f}, \mathrm{n}}(\bar{F} / F)$, let $r_{E}: \operatorname{Aut}_{F}(\bar{F}) \rightarrow \operatorname{Aut}_{F}(E)$ be the restriction map $r_{E}(\phi):=\left.\phi\right|_{E}$. Argue why r_{E} is a well-defined surjective group homomorphism.
Solution. The map r_{E} is well-defined because E / F is normal, so $\phi(E)=E$ for any $\phi \in \operatorname{Aut}_{F}(\bar{F})$. Surjectivity is Lemma 33.4.1.
(b) Suppose $E, E^{\prime} \in \operatorname{Int}_{\mathrm{f}, \mathrm{n}}(\bar{F} / F)$ and $E \subseteq E^{\prime}$. Let $r_{E^{\prime}, E}: \operatorname{Aut}_{F}\left(E^{\prime}\right) \rightarrow \operatorname{Aut}_{F}(E)$ be the restriction $\operatorname{map} r_{E^{\prime}, E}(\phi):=\left.\phi\right|_{E}$. Argue that $r_{E^{\prime}, E}$ is a well-defined surjective group homomorphism and $r_{E}=r_{E^{\prime}, E} \circ r_{E^{\prime}}$.
Solution. Again well-definedness is because E / F is normal, so the restriction in fact is an automorphism of E (which is still F-linear). Surjectivity comes from E^{\prime} / F being normal, for instance Proposition 23.1.1.
(c) Let $G(\bar{F} / F):=\left\{\left(\phi_{E}\right) \in \prod_{E \in \operatorname{Int}_{\mathrm{f}, \mathrm{n}}(\bar{F} / F)} \operatorname{Aut}_{F}(E) \mid \forall E \subseteq E^{\prime}, r_{E^{\prime}, E}\left(\phi_{E^{\prime}}\right)=\phi_{E}\right\}$. Consider

$$
r: \operatorname{Aut}_{F}(\bar{F}) \rightarrow G(\bar{F} / F), \quad r(\phi):=\left(r_{E}(\phi)\right)_{E \in \operatorname{Int}_{\mathrm{f}, \mathrm{n}}(\bar{F} / F)}
$$

Prove that r is a well-defined isomorphism.
Solution. To check well-definedness, we just need to see that $r(\phi) \in G(\bar{F} / F)$, i.e. one needs to check that for $E \subseteq E^{\prime}$ one has $r_{E^{\prime}, E}\left(r_{E^{\prime}}(\phi)\right)=r_{E}(\phi)$. This is really just the equality $\left.\left(\left.\phi\right|_{E^{\prime}}\right)\right|_{E}=\left.\phi\right|_{E}$, which is clear.

To show injectivity, suppose $r(\phi)=\mathrm{id}_{G(\bar{F} / F)}=\left(\mathrm{id}_{E}\right)_{E \in \operatorname{Int}_{\mathrm{f}, \mathrm{n}}(\bar{F} / F)}$. This says that $r_{E}(\phi)=\mathrm{id}_{E}$ for all $E \in \operatorname{Int}_{\mathrm{f}, \mathrm{n}}(\bar{F} / F)$. Then for any $\alpha \in E$ one can choose any $E \in \operatorname{Int}_{\mathrm{f}, \mathrm{n}}(\bar{F} / F)$ containing α (for instance take the normal closure of $F[\alpha] / F$ in \bar{F}), and then one has $\phi(\alpha)=\left.\phi\right|_{E}(\alpha)=$ $r_{E}(\alpha)=\operatorname{id}_{E}(\alpha)=\alpha$. Because α was arbitrary this shows ϕ is the identity on \bar{F}.
For surjectivity, suppose $\left(\phi_{E}\right)_{E \in \operatorname{Int}_{\mathrm{f}, \mathrm{n}}(\bar{F} / F)} \in G(\bar{F} / F)$. Then define $\phi: \bar{F} \rightarrow \bar{F}$ as follows: if $\alpha \in E$, choose any $E \in \operatorname{Int}_{\mathrm{f}, \mathrm{n}}(\bar{F} / F)$ containing α and define $\phi(\alpha):=\phi_{E}(\alpha)$. One needs to check this does not depend on our choice of E : if both $E, E^{\prime} \in \operatorname{Int}_{\mathrm{f}, \mathrm{n}}(\bar{F} / F)$ contain α, then consider the compositum $E^{\prime \prime}$ of E and E^{\prime} in \bar{F}. We have seen that $E^{\prime \prime} / F$ is finite normal because the same is true for both E and E^{\prime}, and one has $E \subseteq E^{\prime \prime}$ and $E^{\prime} \subseteq E^{\prime \prime}$. Using the compatibility of the ϕ_{E} we find $\phi_{E}(\alpha)=\left(r_{E^{\prime \prime}, E}\left(\phi_{E^{\prime \prime}}\right)\right)(\alpha)=\left.\phi_{E^{\prime \prime}}\right|_{E}(\alpha)=\phi_{E^{\prime \prime}}(\alpha)$. Similarly one has $\phi_{E^{\prime}}(\alpha)=\phi_{E^{\prime \prime}}(\alpha)$, and thus $\phi_{E}(\alpha)=\phi_{E^{\prime}}(\alpha)$. We see that $\phi(\alpha)$ does not depend on the choice of E, so ϕ is well-defined, and one can readily verify that ϕ is an F-automorphism of \bar{F} satisfying $r(\phi)=\left(\phi_{E}\right)_{E \in \operatorname{Int}_{\mathrm{f}, \mathrm{n}}(\bar{F} / F)}$.
4. Suppose $\overline{\mathbb{F}}_{p}$ is an algebraic closure of \mathbb{F}_{p}.
(a) Prove that for every positive integer n there is a unique $F_{n} \in \operatorname{Int}_{\mathrm{f}, \mathrm{n}}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right)$ that is isomorphic to $\mathbb{F}_{p^{n}}$.

Solution. Recall $\mathbb{F}_{p^{n}}$ is a splitting field of $x^{p^{n}}-x$ over \mathbb{F}_{p}. Thus if one lets $\alpha_{1}, \ldots, \alpha_{p^{n}}$ denote the zeros of $x^{p^{n}}-x$ in $\overline{\mathbb{F}}_{p}$ then $\mathbb{F}_{p}\left[\alpha_{1}, \ldots, \alpha_{p^{n}}\right]$ is the unique subfield of $\overline{\mathbb{F}}_{p}$ which is a splitting field of $x^{p^{n}}-x$ over \mathbb{F}_{p}, and thus the unique subfield of $\overline{\mathbb{F}}_{p}$ which is isomorphic to $\mathbb{F}_{p^{n}}$.
(b) Prove that $\operatorname{Int}_{\mathrm{f}, \mathrm{n}}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right)=\left\{F_{n} \mid n \in \mathbb{Z}^{+}\right\}$and $\overline{\mathbb{F}}_{p}=\bigcup_{n=1}^{\infty} F_{n}$.

Solution. If $E \in \operatorname{Int}_{\mathrm{f}, \mathrm{n}}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right)$ then E / \mathbb{F}_{p} is finite, so in particular E is a finite field of characteristic p and thus $E \simeq \mathbb{F}_{p^{n}}$ for some n, but then from part (a) we see that $E=F_{n}$. This shows the first equality. For the second equality one inclusion is clear, and conversely if $\alpha \in \overline{\mathbb{F}}_{p}$ then $\mathbb{F}_{p}[\alpha]$ is a finite field contained in $\overline{\mathbb{F}}_{p}$, so by the same reasoning above $\mathbb{F}_{p}[\alpha]=F_{n}$ for some $n \in \mathbb{Z}^{+}$, in particular $\alpha \in F_{n}$.
(c) Let $\widehat{\mathbb{Z}}:=\left\{\left(a_{n}\right) \in \prod_{n=2}^{\infty} \mathbb{Z}_{n}|\forall n| n^{\prime}, a_{n^{\prime}} \equiv a_{n}(\bmod n)\right\}$. Prove Aut $\mathbb{F}_{p}\left(\overline{\mathbb{F}}_{p}\right)=\widehat{\mathbb{Z}}$.

Outline of solution. One can invoke Problem 3(c) here: we know by $4(\mathrm{a})$ that $\operatorname{Int}_{\mathrm{f}, \mathrm{n}}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right)=$ $\left\{F_{n} \mid n \in \mathbb{Z}^{+}\right\}$, one has $\operatorname{Aut}_{F}\left(F_{n}\right) \simeq \mathbb{Z}_{n}$ and also $F_{n} \subseteq F_{n^{\prime}} \Longleftrightarrow n \mid n^{\prime}$. Thus one just needs to know that the compatibility condition $r_{F_{n^{\prime}}, F_{n}}\left(\phi_{F_{n^{\prime}}}\right)=\phi_{F_{n}}$ corresponds to $a_{n}^{\prime} \equiv a_{n}(\bmod n)$ whenever $\phi_{F_{k}}$ corresponds to a_{k} under $\operatorname{Aut}_{\mathbb{F}_{p}}\left(F_{k}\right) \simeq \mathbb{Z}_{k}$ for $k=n, n^{\prime}$. This can be summarized as the commutativity of the following square (which is straightward to check):

(d) Prove $\widehat{\mathbb{Z}}$ does not have a torsion element.

Solution. Suppose $\left(a_{n}\right)_{n \geq 2}$ is a torsion element of $\widehat{\mathbb{Z}}$. This means there is some $k \in \mathbb{Z}^{+}$such that $k \cdot\left(a_{n}\right)_{n \geq 2}=0$, i.e. n divides $k a_{n}$ for each n. For a given n, one in particular has $k n \mid k a_{n k}$, but one can verify this implies $n \mid a_{n k}$. Because $a_{n k} \equiv a_{n}(\bmod n)$ by the definition of $\widehat{\mathbb{Z}}$ we conclude $n \mid a_{n}$, i.e. $a_{n}=0$ in \mathbb{Z}_{n}. This proves $\left(a_{n}\right)_{n \geq 2}=0$.
(e) Prove that if $\overline{\mathbb{F}}_{p} / E$ is a finite extension, then $E=\overline{\mathbb{F}}_{p}$.

Solution. Because $\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}$ is Galois (recall we have seen \mathbb{F}_{p} is perfect) we have that $\overline{\mathbb{F}}_{p} / E$ is Galois, so in particular $\left[\overline{\mathbb{F}}_{p}: E\right]=\left|\operatorname{Aut}_{E}\left(\overline{\mathbb{F}}_{p}\right)\right|$. Now $\operatorname{Aut}_{E}\left(\overline{\mathbb{F}}_{p}\right)$ is a finite subgroup of $\operatorname{Aut}_{\mathbb{F}_{p}}\left(\overline{\mathbb{F}}_{p}\right) \simeq \widehat{\mathbb{Z}}$, and so any non-identity element of $\operatorname{Aut}_{E}\left(\overline{\mathbb{F}}_{p}\right)$ is torsion, but we have seen that $\widehat{\mathbb{Z}}$ has no (nonidentity) torsion elements, so we must deduce $\operatorname{Aut}_{E}\left(\overline{\mathbb{F}}_{p}\right)=\{\mathrm{id}\}$, and hence $\left[\overline{\mathbb{F}}_{p}: E\right]=1$, i.e. $E=\overline{\mathbb{F}}_{p}$.

6. Week 6

1. Prove that $\mathbb{Q}\left[\cos \left(\frac{2 \pi}{n}\right)\right] / \mathbb{Q}$ is a Galois extension and $\operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\cos \left(\frac{2 \pi}{n}\right)\right]\right) \simeq \mathbb{Z}_{n}^{\times} / \pm 1$.

Solution. Recall $\zeta_{n}=e^{2 \pi i / n}=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)$; thus $\cos \left(\frac{2 \pi}{n}\right)=\frac{1}{2}\left(\zeta_{n}+\zeta_{n}^{-1}\right)$. In particular we have $\mathbb{Q}\left[\cos \left(\frac{2 \pi}{n}\right)\right] \subseteq \mathbb{Q}\left[\zeta_{n}\right]$. Because $\mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q}$ is an Galois extension with abelian automorphism group, we deduce that $\mathbb{Q}\left[\cos \left(\frac{2 \pi}{n}\right)\right] / \mathbb{Q}$ is Galois as well.

Recall that $\operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{n}\right]\right) \simeq \mathbb{Z}_{n}^{\times}$via $\sigma \mapsto[i]_{n}$ where $\sigma\left(\zeta_{n}\right)=\zeta_{n}^{i}$. If we denote this isomorphism by φ then one has $\{ \pm 1\}=\varphi(\{1, \tau\})$ where τ is the restriction of complex conjugation to $\mathbb{Q}\left[\zeta_{n}\right]$. If we can show that $\operatorname{Aut}_{\mathbb{Q}\left[\cos \left(\frac{2 \pi}{n}\right)\right]}\left(\mathbb{Q}\left[\zeta_{n}\right]\right)=\{1, \tau\}$ then this means φ induces an isomorphism

$$
\operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\cos \left(\frac{2 \pi}{n}\right)\right]\right) \simeq \operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{n}\right]\right) / \operatorname{Aut}_{\mathbb{Q}\left[\cos \left(\frac{2 \pi}{n}\right)\right]}\left(\mathbb{Q}\left[\zeta_{n}\right]\right) \simeq \mathbb{Z}_{n}^{\times} /\{ \pm 1\}
$$

which is the result we want. To show the equality, notice the inclusion $\{1, \tau\} \subseteq \operatorname{Aut}_{\mathbb{Q}\left[\cos \left(\frac{2 \pi}{n}\right)\right]}\left(\mathbb{Q}\left[\zeta_{n}\right]\right)$ is clear. On the other hand, notice that ζ_{n} is a root of $x^{2}-2 \cos \left(\frac{2 \pi}{n}\right) x+1 \in \mathbb{Q}\left[\cos \left(\frac{2 \pi}{n}\right)\right][x]$, which shows that $\left[\mathbb{Q}\left[\zeta_{n}\right]: \mathbb{Q}\left[\cos \left(\frac{2 \pi}{n}\right)\right]\right] \leq 2$ from which we deduce equality holds.
2. Suppose E / F is a field extension, and $f \in F[x]$ is a polynomial of degree n with distinct zeros $\alpha_{1}, \ldots, \alpha_{n}$ in E. Suppose $\left[F\left[\alpha_{1}, \alpha_{2}\right]: F\right]=n(n-1)$.
(a) Find the degrees of irreducible factors of f in $F[x]$ and $\left(F\left[\alpha_{1}\right]\right)[x]$.

Solution. Notice because $m_{\alpha_{1}, F} \mid f$ one has $\left[F\left[\alpha_{1}\right]: F\right] \leq \operatorname{deg}(f)=n$. In $\left(F\left[\alpha_{1}\right]\right)[x]$ one has a factorization $f(x)=\left(x-\alpha_{1}\right) g(x)$, and then because $\alpha_{1} \neq \alpha_{2}$ one has $m_{\alpha_{2}, F\left[\alpha_{1}\right]} \mid g$ in $\left(F\left[\alpha_{1}\right]\right)[x]$. As a result $\left[F\left[\alpha_{1}, \alpha_{2}\right]: F\left[\alpha_{1}\right]\right] \leq \operatorname{deg}(g)=n-1$. But we know that $\left[F\left[\alpha_{1}, \alpha_{2}\right]: F\right]=n(n-1)$. So if, for instance, $\left[F\left[\alpha_{1}\right]: F\right]<n$ we would deduce that

$$
n(n-1)=\left[F\left[\alpha_{1}, \alpha_{2}\right]: F\right]=\left[F\left[\alpha_{1}, \alpha_{2}\right]: F\left[\alpha_{1}\right]\right]\left[F\left[\alpha_{1}\right]: F\right]<n(n-1)
$$

giving a contradiction. We deduce $\left[F\left[\alpha_{1}\right]: F\right]=n$ and similarly $\left[F\left[\alpha_{1}, \alpha_{2}\right]: F\left[\alpha_{1}\right]\right]=n-1$. As a result one sees that $\operatorname{deg}\left(m_{\alpha_{1}, F}\right)=n$ so $m_{\alpha_{1}, F}=f$, and similarly $m_{\alpha_{2}, F\left[\alpha_{1}\right]}=g$. We deduce that f is irreducible in $F[x]$ and has two irreducible factors (given by $x-\alpha_{1}$ and $g(x)$) in $\left(F\left[\alpha_{1}\right]\right)[x]$.
(b) Prove that $\mathcal{G}_{f, F}$ acts two-transitively on $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$.

Outline of solution. Fix some $i \neq j$. Because f is irreducible in $F[x]$, one can find, using Lemma 16.2.2, an F-isomorphism $\theta: F\left[\alpha_{1}\right] \rightarrow F\left[\alpha_{i}\right]$ sending $\alpha_{1} \mapsto \alpha_{i}$. Now we know from (a) we have $f(x)=\left(x-\alpha_{1}\right) g(x)$ in $\left(F\left[\alpha_{1}\right]\right)[x]$ with $g(x)$ irreducible; one sees that α_{2} is a root of g while α_{j} is a root of $\theta(g)$, so using Lemma 16.2.2 again one can extend this isomorphism to an isomorphism $F\left[\alpha_{1}\right]\left[\alpha_{2}\right] \rightarrow F\left[\alpha_{i}\right]\left[\alpha_{j}\right]$ sending $\alpha_{2} \mapsto \alpha_{j}$. From here one just needs to extend this isomorphism to the splitting field to get the desired element of $\mathcal{G}_{f, F}$.
(c) Let $g(x):=m_{\alpha_{1}+\alpha_{2}, F}(x)$. Prove that $g\left(\alpha_{i}+\alpha_{j}\right)=0$ for every $i \neq j$.

Solution. For any $i \neq j$, by (b) we can find $\theta \in \mathcal{G}_{f, F}$ such that $\theta\left(\alpha_{1}\right)=\alpha_{i}$ and $\theta\left(\alpha_{2}\right)=\alpha_{j}$. Thus one has

$$
0=\theta(0)=\theta\left(g\left(\alpha_{1}+\alpha_{2}\right)\right)=\theta(g)\left(\theta\left(\alpha_{1}+\alpha_{2}\right)\right)=g\left(\alpha_{i}+\alpha_{j}\right)
$$

which gives the result.
3. Suppose $K_{0}:=\mathbb{Q} \subseteq K_{1} \subseteq \cdots \subseteq K_{n} \subseteq \mathbb{C}$ is a tower of fields such that K_{i+1} / K_{i} is a Galois extension and $\left[K_{i+1}: K_{i}\right]=p_{i}$ where p_{i} is an odd prime for all i.
(a) Prove that $K_{i} \subseteq \mathbb{R}$ for all i.

Solution. Suppose some K_{i} is not contained in \mathbb{R}; let i be the largest i such that $K_{i} \subseteq \mathbb{R}$, so $K_{i+1} \nsubseteq \mathbb{R}$. Let $\tau \in \operatorname{Aut}(\mathbb{C})$ denote complex conjugation. Because K_{i+1} / K_{i} is Galois and τ fixes all elements of K_{i}, one has that $\left.\tau\right|_{K_{i+1}}$ is an element of $\operatorname{Aut}_{K_{i}}\left(K_{i+1}\right)$. But because $K_{i+1} \nsubseteq \mathbb{R}$ this element is nontrivial, hence has order 2. This is impossible because \mid Aut $_{K_{i}}\left(K_{i+1}\right) \mid=\left[K_{i+1}: K_{i}\right]$ is odd and we have a contradiction.
(b) Prove that $\mathbb{Q}[\sqrt[3]{2}]$ is not contained in K_{n}.

Suppose for a contradiction $\sqrt[3]{2} \in K_{n}$; let i be maximal such that $\sqrt[3]{2} \notin K_{i}$, so $\sqrt[3]{2} \in K_{i+1}$. Notice that $m_{\sqrt[3]{2}, K_{i}}(x) \mid x^{3}-2$; from the tower $K_{i} \subseteq K_{i}[\sqrt[3]{2}] \subseteq K_{i+1}$ and the fact that $\left[K_{i+1}: K_{i}\right]$
is an odd prime, we deduce that $\operatorname{deg}\left(m_{\sqrt[3]{2}, K_{i}}\right)=\left[K_{i}[\sqrt[3]{2}]: K_{i}\right]=3$. But because K_{i+1} / K_{i} is Galois, $m_{\sqrt[3]{2}}(x)=x^{3}-2$ should then split in K_{i+1}, and this is impossible because two roots of $x^{3}-2$ are not real and by (a) we should have $K_{i+1} \subseteq \mathbb{R}$. We have a contradiction and so $\sqrt[3]{2} \notin K_{n}$.
4. Suppose F is a field and \bar{F} is an algebraic closure of F. Suppose $K, E \in \operatorname{Int}(\bar{F} / F)$ such that K / E is a Galois extension and $[K: E]=p$ where p is prime. Suppose E / F is a Galois extension and $\left|\operatorname{Aut}_{F}(E)\right|=p^{m}$ for some integer m.
(a) Argue why there is $\alpha \in K$ such that $K=E[\alpha]$. Let $L \in \operatorname{Int}(\bar{F} / E)$. Prove that $L[\alpha] / L$ is a Galois extension and $[L[\alpha]: L]=1$ or p.
Solution. The first claim is from primitive element theorem, which applies because K / E is finite Galois (one can also argue more directly by taking any $\alpha \in K \backslash E$ and using the fact that [$K: E]$ is prime). For the second claim, one can verify that K is the splitting field of $m_{\alpha, E}$ over E, and then one can also verify that $L[\alpha]$ is a splitting field of $m_{\alpha, E}$ over L. Because $m_{\alpha, E}$ is separable in $E[x]$ (because K / E is Galois), one has that it is separable in $L[x]$ as well, so $L[\alpha] / L$ is Galois.
For the final claim suppose $[L[\alpha]: L] \neq 1$. Then $\alpha \notin L$ and one can conclude from this, by considering the tower $E \subseteq L \cap K \subseteq K$, that $L \cap K=E$. Then notice one has a natural restriction homomorphism $\operatorname{Aut}_{L}(L[\alpha]) \rightarrow \operatorname{Aut}_{L \cap K}(K)=\operatorname{Aut}_{E}(K)$, which is well-defined because K / E is Galois. One can easily check this is a bijection (surjectivity is because $L[\alpha] / L$ is Galois), and then looking at the size of each group one deduces $[L[\alpha]: L]=[E: K]=p$. This proves $[L[\alpha]: L]=1$ or p.
(b) Argue why for every $\theta_{i} \in \operatorname{Aut}_{F}(E)$, there is $\widehat{\theta}_{i} \in \operatorname{Aut}_{F}(\bar{F})$ such that $\left.\widehat{\theta}_{i}\right|_{E}=\theta_{i}$. Let $\alpha_{i}:=\widehat{\theta}_{i}(\alpha)$. Prove that $E\left[\alpha_{i}\right] / E$ is a Galois extension and $\left[E\left[\alpha_{i}\right]: E\right]=p$ for all i.

Solution. We know because $E[\alpha] / E$ is Galois that $E[\alpha]$ is a splitting field of $m_{\alpha, E}$ over E. From this one can verify that $E\left[\alpha_{i}\right] / E$ is a splitting field of $\widehat{\theta}_{i}\left(m_{\alpha, E}\right)$ over E : for instance if one writes $m_{\alpha, E}(x)=\left(x-\beta_{1}\right) \cdots\left(x-\beta_{m}\right)$, then $\beta_{j} \in E[\alpha]$ for each i, and then $\theta_{i}\left(m_{\alpha, E}\right)=(x-$ $\left.\widehat{\theta}_{i}\left(\beta_{1}\right)\right) \cdots\left(x-\widehat{\theta}_{i}\left(\beta_{m}\right)\right)$, and one can directly verify that $\beta_{j} \in E[\alpha]$ implies that $\widehat{\theta}_{i}\left(\beta_{j}\right) \in E\left[\alpha_{i}\right]$. The degree formula follows because $\theta_{i}\left(m_{\alpha, E}\right)$ is irreducible, which implies $\theta_{i}\left(m_{\alpha, E}\right)=m_{\alpha_{i}, E}$; the irreducibility is because if it were reducible, then one could apply θ_{i}^{-1} to get a factorization of $m_{\alpha, E}$ in $E[x]$, which is impossible.
(c) In the above setting, prove that $E\left[\alpha_{1}, \ldots, \alpha_{p^{m}}\right] / F$ is a Galois extension, and if $\widehat{L} \in \operatorname{Int}(\bar{F} / K)$ and \widehat{L} / F is Galois, then $E\left[\alpha_{1}, \ldots, \alpha_{p^{m}}\right] \subseteq \widehat{L}$.

Outline of solution. We claim $E\left[\alpha_{1}, \ldots, \alpha_{p^{m}}\right]$ is a splitting field of $f(x):=\prod_{i=1}^{p^{m}} \theta_{i}\left(m_{\alpha, E}\right)$ over F; notice this polynomial is actually in $F[x]$ because $\sigma(f)=f$ for all $\sigma \in \operatorname{Aut}_{F}(E)$ and E / F is Galois. Also notice that each α_{i} is a root of $f(x)$, because α_{i} is a root of $\theta_{i}\left(m_{\alpha, E}\right)$. So to see it is a splitting field we just need to see that each root of f is in this field; but each $\theta_{i}\left(m_{\alpha, E}\right)$ splits in $E\left[\alpha_{i}\right]$ by (b), so it splits in $E\left[\alpha_{1}, \ldots, \alpha_{p^{m}}\right]$, and then f splits in this field as well. Thus we have the claim, and we notice that f is separable, as it is a product of separable polynomials in $E[x]$, so $E\left[\alpha_{1}, \ldots, \alpha_{p^{m}}\right] / E$ is Galois.
For the second claim, if $\widehat{L} \in \operatorname{Int}(\bar{F} / K)$ such that \widehat{L} / F is Galois, then because $\widehat{\theta}_{i} \in \operatorname{Aut}_{F}(\bar{F})$ one has that $\widehat{\theta}_{i}(\widehat{L})=\widehat{L}$. In particular because $\alpha \in K \subseteq L$ one has that $\alpha_{i}=\widehat{\theta}_{i}(\alpha) \in \widehat{L}$ for each i, and then the claim $E\left[\alpha_{1}, \ldots, \alpha_{p^{m}}\right] \subseteq \widehat{L}$ follows.
(d) Prove that $\left[E\left[\alpha_{1}, \ldots, \alpha_{p^{m}}\right]: F\right]$ is a power of p.

Outline of solution. Because $[E: F]$ is a power of p by hypothesis, it suffices to show that $\left[E\left[\alpha_{1}, \ldots, \alpha_{p^{m}}\right]: E\right]$ is a power of p. If we fix some i and take $K=E\left[\alpha_{i}\right]$ then $[K: E]=p$ by (b). Thus we are in the situation of (a), and for $L=E\left[\alpha_{1}, \ldots, \alpha_{i-1}\right]$ we deduce that $\left[E\left[\alpha_{1}, \ldots, \alpha_{i}\right]: E\left[\alpha_{1}, \ldots, \alpha_{i-1}\right]\right]=1$ or p. Thus the claim follows by induction on i.

7. Week 7

1. Suppose p_{1}, \ldots, p_{n} are distinct primes. Let $F:=\mathbb{Q}\left[\sqrt{p_{1}}, \ldots, \sqrt{p_{n}}\right]$.
(a) Prove that F / \mathbb{Q} is a Galois extension and $\operatorname{Aut}_{\mathbb{Q}}(F) \simeq \underbrace{\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{n \text { times }}$.

Solution. The extension is Galois because F is a splitting field of $\left(x^{2}-p_{1}\right) \cdots\left(x^{2}-p_{n}\right)$ over \mathbb{Q}. For the second claim one uses Kummer theory: notice that, if Λ is as in our notation from Kummer theory, base field \mathbb{Q} and $n=2$, then one exactly has $F=\Lambda\left(\left\langle p_{1}\left(\mathbb{Q}^{\times}\right)^{2}, \ldots, p_{n}\left(\mathbb{Q}^{\times}\right)^{2}\right\rangle\right)$. As a result of Kummer theory then one has $\operatorname{Aut}_{\mathbb{Q}}(F) \simeq\left\langle p_{1}\left(\mathbb{Q}^{\times}\right)^{2}, \ldots, p_{n}\left(\mathbb{Q}^{\times}\right)^{2}\right\rangle$. First one claims that $\left\langle p_{1}\left(\mathbb{Q}^{\times}\right)^{2}, \ldots, p_{n}\left(\mathbb{Q}^{\times}\right)^{2}\right\rangle \simeq \underbrace{\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{n \text { times }}$. To prove this claim, consider

$$
\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2} \rightarrow\left\langle p_{1}\left(\mathbb{Q}^{\times}\right)^{2}, \ldots, p_{n}\left(\mathbb{Q}^{\times}\right)^{2}\right\rangle, \quad\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \mapsto \prod_{i=1}^{n} p_{i}^{\varepsilon_{i}}\left(\mathbb{Q}^{\times}\right)^{2}
$$

One can prove this is an isomorphism: each generator of the right hand side is clearly in the image, and injectivity follows from the fact that the primes are distinct, so $\prod_{i=1}^{n} p_{i}^{\varepsilon_{i}}$ can never be a square in \mathbb{Q} unless each $\varepsilon_{i}=0$. With this isomorphism proved one has $\operatorname{Aut}_{\mathbb{Q}}(F) \simeq$ $\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$. To simplify the right hand side, one can either show that in general $\widehat{G \times H} \simeq$ $\widehat{G} \times \widehat{H}$ for finite groups G, H, and then prove $\widehat{\mathbb{Z}_{2}} \simeq \mathbb{Z}_{2}$, or one can directly show that
where $e_{i}:=(0, \ldots, 0,1,0, \ldots, 0)$ (with a 1 in the i th position) is an isomorphism. The right-hand side is clearly isomorphic to $\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$ so this gives the result.
(b) Prove that every $K \in \operatorname{Int}(F / \mathbb{Q})$ which is a quadratic extension of \mathbb{Q} is of the form $\mathbb{Q}\left[\sqrt{\prod_{i \in I} p_{i}}\right]$ where I is a non-empty subset of $\{1,2, \ldots, n\}$.
Outline of solution. Notice that every $\sigma \in \operatorname{Aut}_{\mathbb{Q}}(F)$ must send $\sqrt{p_{i}} \mapsto \pm \sqrt{p_{i}}$ for each i, and these choices for $i=1, \ldots, n$ determine σ. Thus there are at most 2^{n} automorphisms; but from (a) there are exactly 2^{n} automorphisms, and thus every possibility occurs with regards to where $\sqrt{p_{i}}$ is mapped to. That is, for any choice of subset $I \subseteq\{1, \ldots, n\}$, there exists an automorphism σ satisfying $\sigma\left(\sqrt{p_{i}}\right)=\sqrt{p_{i}}$ for $i \in I$ and $\sigma\left(\sqrt{p_{j}}\right)=-\sqrt{p_{j}}$ for $j \notin I$.
Now to the claim at hand: we claim that the subfields $\mathbb{Q}\left[\sqrt{\prod_{i \in I} p_{i}}\right]$ are distinct as I varies over different (non-empty) subsets of $\{1, \ldots, n\}$. To see this, suppose $I \neq J$ and take (without loss of generality) some $i \in I \backslash J$. Take some σ sending $\sqrt{p_{i}} \mapsto-\sqrt{p_{i}}$ and $\sqrt{p_{j}} \mapsto \sqrt{p_{j}}$ for $j \neq i$; then σ fixes all elements of $\mathbb{Q}\left[\sqrt{\prod_{j \in J} p_{j}}\right]$ but not $\mathbb{Q}\left[\sqrt{\prod_{i \in I} p_{i}}\right]$, and thus these two fields are distinct. This gives us $2^{n}-1$ distinct possible $K \in \operatorname{Int}(F / \mathbb{Q})$ which are quadratic over \mathbb{Q}, and if we can show there are at most $2^{n}-1$ possible K then this shows that every such K has the form $\mathbb{Q}\left[\sqrt{\prod_{i \in I} p_{i}}\right]$.

To prove this, we notice that $K \in \operatorname{Int}(F / \mathbb{Q})$ correspond bijectively to index 2 subgroups of $\operatorname{Aut}_{\mathbb{Q}}(F) \simeq \mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$, so we instead show that $\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$ has $2^{n}-1$ subgroups of index
2. For this, one notices that an index 2 subgroup $H \leq \mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$ is equivalent giving a surjective homomorphism $\mathbb{Z}_{2} \times \cdots \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$. To count the number of such homomorphisms, it is convenient to use the language of vector spaces: both $\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$ and \mathbb{Z}_{2} are \mathbb{Z}_{2}-vector
spaces, and group homomorphisms $\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ are the same as \mathbb{Z}_{2}-linear maps. To count these, we can consider the basis $\left\{e_{1}, \ldots, e_{n}\right\}$ where $e_{i}:=(0, \ldots, 0,1,0, \ldots, 0)$ with a 1 in the i-th position. Then giving a \mathbb{Z}_{2}-linear map $\mathbb{Z}_{2} \times \cdots \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ is the same as choosing where the basis elements go, i.e. is the same as a function $\left\{e_{1}, \ldots, e_{n}\right\} \rightarrow \mathbb{Z}_{2}$. There are 2^{n} such functions, hence 2^{n} such linear maps, and only one of these (the zero map) is not surjective. Thus there are $2^{n}-1$ surjective linear maps, and then $2^{n}-1$ index 2 subgroups of $\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$, as desired.
(c) Prove that $F=\mathbb{Q}\left[\sqrt{p_{1}}+\cdots+\sqrt{p_{n}}\right]$.

Solution. First we claim that part (a) implies $\sqrt{p_{1}}, \ldots, \sqrt{p_{n}}$ are linearly independent over \mathbb{Q} : if not then, after relabeling if necessary, we can write $\sqrt{p_{n}}$ as a \mathbb{Q}-linear combination of $\sqrt{p_{i}}$ for $1 \leq i<n$, and then $\sqrt{p_{n}} \in \mathbb{Q}\left[\sqrt{p_{1}}, \ldots, \sqrt{p_{n-1}}\right]$, so $\mathbb{Q}\left[\sqrt{p_{1}}, \ldots, \sqrt{p_{n}}\right]=\mathbb{Q}\left[\sqrt{p_{1}}, \ldots, \sqrt{p_{n-1}}\right]$. But applying part (a) to both sides would imply that
$\underbrace{\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{n-1 \text { times }} \simeq \operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\sqrt{p_{1}}, \ldots, \sqrt{p_{n-1}}\right]\right)=\operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\sqrt{p_{1}}, \ldots, \sqrt{p_{n}}\right]\right) \simeq \underbrace{\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{n \text { times }}$,
yielding a contradiction. Now to show the result we show that $\operatorname{Aut}_{\mathbb{Q}\left[\sqrt{p_{1}}+\cdots+\sqrt{p_{n}}\right]}(F)=\{\mathrm{id}\}$. To show this, suppose we have such an automorphism σ : then $\sigma\left(\sqrt{p_{1}}+\cdots+\sqrt{p_{n}}\right)=\sqrt{p_{1}}+\cdots+\sqrt{p_{n}}$. Writing $\sigma\left(\sqrt{p_{i}}\right)=\varepsilon_{i} \sqrt{p_{i}}$ for $\varepsilon_{i} \in\{ \pm 1\}$ we have $\sqrt{p_{1}}+\cdots+\sqrt{p_{n}}=\varepsilon_{1} \sqrt{p_{1}}+\cdots+\varepsilon_{n} \sqrt{p_{n}}$, and rearranging one has the equation

$$
\left(1-\varepsilon_{1}\right) \sqrt{p_{1}}+\cdots+\left(1-\varepsilon_{n}\right) \sqrt{p_{n}}=0
$$

Now by our first remark about linear independence, we conclude $1-\varepsilon_{i}=0$ for each i, i.e. $\sigma\left(\sqrt{p_{i}}\right)=\sqrt{p_{i}}$ for each i, and this shows $\sigma=\mathrm{id}$.
2. Suppose p is an odd prime and $\zeta_{n}:=e^{\frac{2 \pi i}{n}}$ for every positive integer n.
(a) Prove that $\mathbb{Q}\left[\zeta_{4 p}\right]=\mathbb{Q}\left[\zeta_{p}, i\right]$.

Notice that $\zeta_{p}=\zeta_{4 p}^{4}$ and $i=\zeta_{4 p}^{p}$, so $\mathbb{Q}\left[\zeta_{p}, i\right] \subseteq \mathbb{Q}\left[\zeta_{4 p}\right]$. On the other hand, notice that $\left(i \zeta_{p}\right)^{4 p}=1$, so $o\left(i \zeta_{p}\right) \mid 4 p$, and one can directly verify that $\left(i \zeta_{p}\right)^{k} \neq 1$ for $k \in\{2,4, p, 2 p\}$, and thus we see $o(i \zeta)=4 p$. This means that $i \zeta_{p}$ must generate all $4 p$-th roots of unity, and in particular $\zeta_{4 p} \in\left\langle i \zeta_{p}\right\rangle \subseteq \mathbb{Q}\left[\zeta_{p}, i\right]$.
(b) Prove that $\mathbb{Q}\left[\sin \left(\frac{2 \pi}{p}\right)\right] / \mathbb{Q}$ is a Galois extension and $\operatorname{Aut}_{\mathbb{Q}\left[\sin \left(\frac{2 \pi}{p}\right)\right]}\left(\mathbb{Q}\left[\zeta_{4 p}\right]\right)=\{\operatorname{id}, \tau\}$ where τ is the restriction of complex conjugation.
Notice that $\sin \left(\frac{2 \pi}{p}\right)=\frac{\zeta_{p}-\zeta_{p}^{-1}}{2 i}$ and in particular $\mathbb{Q}\left[\sin \left(\frac{2 \pi}{p}\right)\right] \subseteq \mathbb{Q}\left[\zeta_{4 p}\right]$. Because Aut $\left(\mathbb{Q}\left[\zeta_{4 p}\right]\right)$ is abelian it follows that $\mathbb{Q}\left[\sin \left(\frac{2 \pi}{p}\right)\right] / \mathbb{Q}$ is Galois. For the second claim, the inclusion $\{\mathrm{id}, \tau\} \subseteq$ Aut $_{\mathbb{Q}\left[\sin \left(\frac{2 \pi}{p}\right)\right]}\left(\mathbb{Q}\left[\zeta_{4 p}\right]\right)$ is clear because $\mathbb{Q}\left[\sin \left(\frac{2 \pi}{p}\right)\right] \subseteq \mathbb{R}$. For the other inclusion, we recall we proved in (a) that $i \zeta_{p}$ is a primitive $4 p$-th root of unity and thus $\mathbb{Q}\left[\zeta_{4 p}\right]=\mathbb{Q}\left[i \zeta_{p}\right]$. Now taking the equation $\zeta_{p}=\cos \left(\frac{2 \pi}{p}\right)+i \sin \left(\frac{2 \pi}{p}\right)$, multiplying by i and rearranging, one can see that $i \zeta_{p}$ is a root of the polynomial $x^{2}+2 \sin \left(\frac{2 \pi}{p}\right) x+1$, so in particular $\left[\mathbb{Q}\left[\zeta_{4 p}\right]: \mathbb{Q}\left[\sin \left(\frac{2 \pi}{p}\right)\right]\right]=\left[\mathbb{Q}\left[i \zeta_{p}\right]\right.$: $\left.\mathbb{Q}\left[\sin \left(\frac{2 \pi}{p}\right)\right]\right] \leq 2$ and this lets us conclude equality $\operatorname{Aut}_{\mathbb{Q}\left[\sin \left(\frac{2 \pi}{p}\right)\right]}\left(\mathbb{Q}\left[\zeta_{4 p}\right]\right)=\{\mathrm{id}, \tau\}$.
(c) Prove that $\operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\sin \left(\frac{2 \pi}{p}\right)\right]\right) \simeq \frac{\mathbb{Z}_{4 p}^{\times}}{\{ \pm 1\}} ;$ in particular $\left[\mathbb{Q}\left[\sin \left(\frac{2 \pi}{p}\right)\right]: \mathbb{Q}\right]=p-1$.

If $\varphi: \operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{4 p}\right]\right) \rightarrow \mathbb{Z}_{4 p}^{\times}$is the isomorphism we are familiar with, then notice $\varphi(\{1, \tau\})=$ $\{ \pm 1\}$, and thus one has

$$
\operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\sin \left(\frac{2 \pi}{p}\right)\right]\right) \simeq \frac{\operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{4 p}\right]\right)}{\operatorname{Aut}_{\mathbb{Q}\left[\sin \left(\frac{2 \pi}{p}\right)\right]}\left(\mathbb{Q}\left[\zeta_{4 p}\right]\right)}=\frac{\operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{4 p}\right]\right)}{\{1, \tau\}} \simeq \frac{\mathbb{Z}_{4 p}^{\times}}{\{ \pm 1\}}
$$

The second claim follows immediately from tower law.
3. Suppose p is prime, F is a field of characteristic zero, and $a \in F^{\times}$. Let E be a splitting field of $x^{p}-a$ over F.
(a) Suppose $\alpha \in E$ is a zero of $x^{p}-a$. Argue that there is an element ζ of order p in E such that $x^{p}-a=(x-\alpha)(x-\zeta \alpha) \cdots\left(x-\zeta^{p-1} \alpha\right)$. Suppose $f \in F[x]$ divides $x^{p}-a$ and $\operatorname{deg} f<p$. Prove that $\zeta^{i} \operatorname{deg} f$ is in F for some integer i.
Solution. Notice that the formal derivative of $x^{p}-a$ is $p x^{p-1}$, and p is invertible in F because we are in characteristic zero, so one sees that $\operatorname{gcd}\left(x^{p}-a, p x^{p-1}\right)=1$ which implies $x^{p}-a$ does not have multiple roots. Thus we can take a root $\alpha^{\prime} \neq \alpha$ of $x^{p}-a$ in E, and one sees that $\alpha / \alpha^{\prime} \neq 1$ but $\left(\alpha / \alpha^{\prime}\right)^{p}=a / a=1$, and thus one can take $\zeta:=\alpha / \alpha^{\prime}$. Because this ζ has order p we see that $\alpha, \zeta \alpha, \ldots, \zeta^{p-1} \alpha$ are distinct roots of $x^{p}-a$ in E and so we get the desired decomposition of $x^{p}-a$.

For the next claim suppose f is as given. If we write $f(x) g(x)=x^{p}-a=\prod_{i=0}^{p-1}\left(x-\zeta^{i} \alpha\right)$ then unique factorization in $E[x]$ tells us that $f(x)=\prod_{i \in S}\left(x-\zeta^{i} \alpha\right)$ for some non-empty proper subset $S \subseteq\{0,1, \ldots, p-1\}$. Looking at the constant term of this and recalling that $f \in F[x]$, we see that $\zeta^{i} \alpha^{\operatorname{deg} f} \in F$ where $i=\sum_{j \in S} j$.
(b) Prove that if $x^{p}-a$ is reducible in $F[x]$, then $x^{p}-a$ has a zero in F.

Solution. If $x^{p}-a$ is reducible then we have some f as in part (a), with the additional hypothesis that f is non-constant. Thus if $d:=\operatorname{deg}(f)$ then $0<d<p$ and $\zeta^{i} \alpha^{d} \in F$. Notice this implies that $a^{d}=\left(\zeta^{i} \alpha^{d}\right)^{p}$, so for $b:=\zeta^{i} \alpha^{d} \in F$ one has $a=b^{d}$. We claim now that a is itself a p-th power in F. For this, we notice that $\operatorname{gcd}(d, p)=1$ and write $1=d x+p y$ for $x, y \in \mathbb{Z}$, then calculate

$$
a=a^{d x+p y}=a^{d x} a^{p y}=\left(b^{x}\right)^{p}\left(a^{y}\right)^{p}=\left(b^{x} a^{y}\right)^{p} .
$$

Since $b^{x} a^{y} \in F$ we see that that $x^{p}-a$ has a zero in F.
4. Suppose n, n_{1}, \ldots, n_{k} are positive integers.
(a) Use a special case of Dirichlet's theorem which says there are infinitely many primes in the arithmetic progression $\{m k+1\}_{k=1}^{\infty}$ for every positive integer m, to show that \mathbb{Z}_{n} is isomorphic to a quotient of \mathbb{Z}_{p}^{\times}for some prime p.
Solution. Dirichlet's theorem says we can find a prime of the form $p=n k+1$ (in fact there are infinitely many choices). Thus n divides $p-1=\mathbb{Z}_{p}^{\times}$and so \mathbb{Z}_{n} can be written as a quotient of \mathbb{Z}_{p}^{\times}: more precisely, we know because \mathbb{Z}_{p}^{\times}is cyclic and $n \mid p-1$ that there is a (necessarily unique) subgroup $H \leq \mathbb{Z}_{p}^{\times}$of order $(p-1) / n$. Then $\mathbb{Z}_{p}^{\times} / H$ is a cyclic group of order n so $\mathbb{Z}_{p}^{\times} / H \simeq \mathbb{Z}_{n}$.
(b) Prove that $\mathbb{Z}_{n_{1}} \times \cdots \mathbb{Z}_{n_{k}}$ is isomorphic to a quotient of \mathbb{Z}_{q}^{\times}for some $q=p_{1} \cdots p_{k}$ and some primes p_{i}.

Solution. Using Dirichlet's theorem choose a prime p_{1} of the form $p_{1}=n_{1} k+1$ for some k. Using Dirichlet's theorem, choose a prime $p_{2} \neq p_{1}$ of the form $p_{2}=n_{2} k+1$ for some k; notice that Dirichlet's theorem gives us infinitely primes to choose from, so we can avoid p_{1} if necessary. Next choose $p_{3} \notin\left\{p_{1}, p_{2}\right\}$ of the form $p_{3}=n_{3} k+1$ for some k (again we can avoid p_{1}, p_{2} because Dirichlet's theorem gives us infinitely many choices), and continue in this fashion until one has a sequence of distinct primes p_{1}, \ldots, p_{k} with $p_{i} \equiv 1 \bmod n_{i}$. Let $q=p_{1} \cdots p_{k}$. Using Chinese remainder theorem, and the fact about rings $(A \times B)^{\times} \simeq A^{\times} \times B^{\times}$, we calculate

$$
\mathbb{Z}_{q}^{\times}=\left(\mathbb{Z}_{p_{1} \cdots p_{k}}\right)^{\times} \simeq\left(\mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{k}}\right)^{\times} \simeq \mathbb{Z}_{p_{1}}^{\times} \times \cdots \times \mathbb{Z}_{p_{k}}^{\times}
$$

(Note: the first isomorphism, which used Chinese remainder theorem, is the reason we insist the primes p_{i} be distinct.) Now for each i, as in part (a) we can write $\mathbb{Z}_{n_{i}}$ as a quotient of $\mathbb{Z}_{p_{i}}^{\times}$, say $\mathbb{Z}_{n_{i}} \simeq \mathbb{Z}_{p_{i}}^{\times} / H_{i}$. One then has

$$
\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}} \simeq \mathbb{Z}_{p_{1}}^{\times} / H_{1} \times \cdots \times \mathbb{Z}_{p_{k}}^{\times} / H_{k} \simeq\left(\mathbb{Z}_{p_{1}}^{\times} \times \cdots \times \mathbb{Z}_{p_{k}}^{\times}\right) /\left(H_{1} \times \cdots \times H_{k}\right)
$$

Thus combining our two isomorphisms we see that $\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$ is a quotient of \mathbb{Z}_{q}.
(c) Prove that there is a Galois extension F / \mathbb{Q} such that $\operatorname{Aut}_{\mathbb{Q}}(F) \simeq \mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$.

Solution. We know from (b) we can find q such that $\mathbb{Z}_{n_{1}} \times \cdots \mathbb{Z}_{n_{k}} \simeq \mathbb{Z}_{q}^{\times} / H$ for some $H \leq$ \mathbb{Z}_{q}^{\times}. The latter is isomorphic to $\operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{q}\right]\right)$, so if we write $\varphi: \operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{q}\right]\right) \rightarrow \mathbb{Z}_{q}^{\times}$for our isomorphism, and let $G:=\varphi^{-1}(H)$, then for $F:=\operatorname{Fix}(G)$ one finds that F / \mathbb{Q} is Galois (because the automorphism group is abelian) and

$$
\operatorname{Aut}_{\mathbb{Q}}(F) \simeq \operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{q}\right]\right) / \operatorname{Aut}_{F}\left(\mathbb{Q}\left[\zeta_{q}\right]\right)=\operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{q}\right]\right) / G \simeq \mathbb{Z}_{q}^{\times} / H \simeq \mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}
$$

8. Week 8

1. Suppose R is a unital commutative ring and n is a positive integer. For every permutation $\sigma \in S_{n}$, let

$$
d_{\sigma}: R^{n} \times \cdots \times R^{n} \rightarrow R, \quad d_{\sigma}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right):=\prod_{j=1}^{n} v_{\sigma(j) j}
$$

where $\mathbf{v}_{j}=\left(\begin{array}{c}v_{1 j} \\ \vdots \\ v_{n j}\end{array}\right)$. Let

$$
d: R^{n} \times \cdots \times R^{n} \rightarrow R, \quad d\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right):=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) d_{\sigma}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)
$$

(a) Prove that for every $\sigma \in S_{n}$ and integer $i \in[1, n], d_{\sigma}$ is an R-module homomorphism from R^{n} to R with respect to \mathbf{v}_{i}. This means
$d_{\sigma}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i}+c \mathbf{v}_{i}^{\prime}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{n}\right)=d_{\sigma}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)+c d_{\sigma}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i}^{\prime}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{n}\right)$
for every \mathbf{v}_{j} 's and \mathbf{v}_{i}^{\prime} in R^{n}, and $c \in R$. (We say d_{σ} is n-linear).
(b) Prove that d is n-linear.
(c) Suppose $\mathbf{v}_{i}=\mathbf{v}_{j}$ and τ is the transposition $(i, j) \in S_{n}$. Prove that for every $\sigma \in S_{n}$, we have

$$
d_{\sigma \tau}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)=d_{\sigma}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)
$$

(d) Suppose $\mathbf{v}_{i}=\mathbf{v}_{j}$ for some $i \neq j$. Prove that $d\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)=0$. (We say d is alternating.)

Solution. Let $\tau=(i, j)$; then one has a decomposition $S_{n}=A_{n} \cup A_{n} \tau$, and thus using (c) we have

$$
\begin{aligned}
d\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right) & =\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) d_{\sigma}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right) \\
& =\left(\sum_{\sigma \in A_{n}} \operatorname{sgn}(\sigma) d_{\sigma}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)\right)+\left(\sum_{\sigma \in A_{n}} \operatorname{sgn}(\sigma \tau) d_{\sigma \tau}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)\right) \\
& =\left(\sum_{\sigma \in A_{n}} d_{\sigma}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)\right)-\left(\sum_{\sigma \in A_{n}} d_{\sigma}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)\right) \\
& =0
\end{aligned}
$$

(e) For every index i, we identify $\{1, \ldots, n\} \backslash\{i\}$ with $\{1, \ldots, n-1\}$ by shifting all the numbers more than i by 1 ; this means we let

$$
\ell_{i}:\{1, \ldots, n\} \backslash\{i\} \rightarrow\{1, \ldots, n-1\}, \quad \ell_{i}(j):= \begin{cases}j & \text { if } j<i \\ j-1 & \text { if } j>i\end{cases}
$$

For every $\sigma \in S_{n}$ and integer i in $[1, n]$, we let σ_{i} be the induced permutation on $\{1, \ldots, n\}$ after dropping i; this means σ_{i} is the composite of the following bijections

$$
\{1, \ldots, n-1\} \xrightarrow{\ell_{i}^{-1}}\{1, \ldots, n\} \backslash\{i\} \xrightarrow{\sigma}\{1, \ldots, n\} \backslash\{\sigma(i)\} \xrightarrow{\ell_{\sigma(i)}}\{1, \ldots, n-1\} .
$$

Let $\widehat{\sigma}_{i} \in S_{n}$ be such that $\widehat{\sigma}_{i}(j)=\sigma_{i}(j)$ if $j<n$ and $\widehat{\sigma}_{i}(n)=n$. Prove that

$$
\widehat{\sigma}_{i}=(\sigma(i), \ldots, n)^{-1} \sigma(i, \ldots, n)
$$

where the first and the last factors are cycle permutations in S_{n}. Deduce that

$$
\operatorname{sgn}\left(\sigma_{i}\right)=(-1)^{i+\sigma(i)} \operatorname{sgn}(\sigma)
$$

Outline of solution. For the first claim one verifies that the two permutations have the same value at each $j \in[1, \ldots, n]$; this can easily be verified easily by separating into the following cases:

- $j<i$ and $\sigma(j) \geq \sigma(i)$,
- $j<i$ and $\sigma(j)<\sigma(i)$,
- $i \leq j<n$ and $\sigma(j+1) \geq \sigma(i)$,
- $i \leq j<n$ and $\sigma(j+1)<\sigma(i)$,
- $j=n$.

It is clear from the definition of $\widehat{\sigma}_{i}$ that $\operatorname{sgn}\left(\widehat{\sigma}_{i}\right)=\operatorname{sgn}\left(\sigma_{i}\right)$, and then we calculate

$$
\begin{aligned}
\operatorname{sgn}\left(\sigma_{i}\right) & =\operatorname{sgn}\left(\widehat{\sigma}_{i}\right)=\operatorname{sgn}\left((\sigma(i), \ldots, n)^{-1} \sigma(i, \ldots, n)\right) \\
& =\operatorname{sgn}((\sigma(i), \ldots, n)) \operatorname{sgn}(\sigma) \operatorname{sgn}((i, \ldots, n)) \\
& =(-1)^{n-\sigma(i)+1} \operatorname{sgn}(\sigma)(-1)^{n-i+1} \\
& =(-1)^{i+\sigma(i)} \operatorname{sgn}(\sigma) .
\end{aligned}
$$

(f) For indexes i, k, let $\mathbf{v}_{i}^{(k)}$ be the $(n-1)$-by- 1 column that we obtain after dropping the k-th row of \mathbf{v}_{i}. We want to start with n column vectors in R^{n}, drop the j-th vector and the k-th components of the rest to get $n-1$ vectors in R^{n-1}. Starting with $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, we get $\mathbf{w}_{r}:=\mathbf{v}_{\ell_{j}^{-1}(r)}^{(k)}$. Justify yourself that the $\sigma_{j}(r)$ component of \mathbf{w}_{r} is the $\sigma\left(\ell_{j}^{-1}(r)\right)$-th component of $\mathbf{v}_{\ell_{j}^{-1}(r)}$ if $\sigma(j)=k$. Prove that

$$
d_{\sigma}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}, \mathbf{e}_{k}, \mathbf{v}_{j+1}, \ldots, \mathbf{v}_{n}\right)= \begin{cases}d_{\sigma_{j}}\left(\mathbf{v}_{\ell_{j}^{-1}(1)}^{(k)}, \ldots, \mathbf{v}_{\ell_{j}^{-1}(n-1)}^{(k)}\right) & \text { if } \sigma(j)=k \\ 0 & \text { otherwise }\end{cases}
$$

where \mathbf{e}_{i} is the column matrix with 1 in its i-th row and 0 in the rest of entries.
(g) Prove that

$$
d\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}, \mathbf{e}_{k}, \mathbf{v}_{j+1}, \ldots, \mathbf{v}_{n}\right)=(-1)^{j+k} d\left(\mathbf{v}_{\ell_{j}^{-1}(1)}^{(k)}, \ldots, \mathbf{v}_{\ell_{j}^{-1}(n-1)}^{(k)}\right)
$$

and deduce that

$$
\begin{equation*}
d\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)=\sum_{k=1}^{n}(-1)^{j+k} v_{k j} d\left(\mathbf{v}_{\ell_{j}^{-1}(1)}^{(k)}, \ldots, \mathbf{v}_{\ell_{j}^{-1}(n-1)}^{(k)}\right) \tag{1}
\end{equation*}
$$

Using the definition of d and using parts (e) and (f) we have

$$
\begin{aligned}
d\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}, \mathbf{e}_{k}, \mathbf{v}_{j+1}, \ldots, \mathbf{v}_{n}\right) & =\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) d_{\sigma}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}, \mathbf{e}_{k}, \mathbf{v}_{j+1}, \ldots, \mathbf{v}_{n}\right) \\
& =\sum_{\substack{\sigma \in S_{n} \\
\sigma(j)=k}}(-1)^{j+\sigma(j)} d_{\sigma_{j}}\left(\mathbf{v}_{\ell_{j}^{-1}(1)}^{(k)}, \ldots, \mathbf{v}_{\ell_{j}^{-1}(n-1)}^{(k)}\right) \\
& =(-1)^{j+k} \sum_{\sigma \in S_{n-1}} d_{\sigma}\left(\mathbf{v}_{\ell_{j}^{-1}(1)}^{(k)}, \ldots, \mathbf{v}_{\ell_{j}^{-1}(n-1)}^{(k)}\right) \\
& =(-1)^{j+1} d\left(\mathbf{v}_{\ell_{j}^{-1}(1)}^{(k)}, \ldots, \mathbf{v}_{\ell_{j}^{-1}(n-1)}^{k}\right) .
\end{aligned}
$$

For the second claim we write $\mathbf{v}_{j}=\sum_{i=1}^{n} v_{k j} \mathbf{e}_{k}$ and expand using linearity in the j-th component:

$$
\begin{aligned}
d\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right) & =d\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}, \sum_{k=1}^{n} \mathbf{v}_{k j} \mathbf{e}_{k}, \mathbf{v}_{j+1}, \ldots, \mathbf{v}_{n}\right) \\
& =\sum_{k=1}^{n} v_{k j} d\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}, \mathbf{e}_{k}, \mathbf{v}_{j+1}, \ldots, \mathbf{v}_{n}\right) \\
& =\sum_{k=1}^{n}(-1)^{j+k} v_{k j} d\left(\mathbf{v}_{\ell_{j}^{-1}(1)}^{(k)}, \ldots, \mathbf{v}_{\ell_{j}^{-1}(n-1)}^{(k)}\right) .
\end{aligned}
$$

2. Suppose R is a unital commutative ring and $f: R^{n} \times R^{n} \rightarrow R$ is bilinear; that means it is an R-module homomorphism with respect to each component separately. Suppose $f(\mathbf{v}, \mathbf{v})=0$ for every $\mathbf{v} \in R^{n}$. Prove that $f(\mathbf{v}, \mathbf{w})=-f(\mathbf{w}, \mathbf{v})$ for every $\mathbf{v}, \mathbf{w} \in R^{n}$. (Hint. Consider $f(\mathbf{v}+\mathbf{w}, \mathbf{v}+\mathbf{w})$.)

Solution. Using biliearity one computes

$$
\begin{aligned}
f(\mathbf{v}+\mathbf{w}, \mathbf{v}+\mathbf{w}) & =f(\mathbf{v}, \mathbf{v}+\mathbf{w})+f(\mathbf{w}, \mathbf{v}+\mathbf{w}) \\
& =f(\mathbf{v}, \mathbf{v})+f(\mathbf{v}, \mathbf{w})+f(\mathbf{w}, \mathbf{v})+f(\mathbf{w}, \mathbf{w}) \\
& =f(\mathbf{v}, \mathbf{w})+f(\mathbf{w}, \mathbf{v}) .
\end{aligned}
$$

From this one subtracts to deduce the result.
3. Suppose R is a unital commutative ring and n is a positive integer n. Suppose $f: R^{n} \times \cdots \times R^{n} \rightarrow R$ is n-linear and alternating.
(a) Write $\mathbf{v}_{j}=\sum_{i=1}^{n} v_{i j} \mathbf{e}_{i}$ where \mathbf{e}_{i} is the column matrix with 1 in its i-th row and 0 in the rest of entries. Argue why

$$
f\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)=\sum_{\sigma \in S_{n}} f\left(\mathbf{e}_{\sigma(1)}, \ldots, \mathbf{e}_{\sigma(n)}\right) \prod_{j=1}^{n} v_{\sigma(j) j}
$$

(b) Argue why $f\left(\mathbf{e}_{\sigma(1)}, \ldots, \mathbf{e}_{\sigma(n)}\right)=\operatorname{sgn}(\sigma) f\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right)$ for every $\sigma \in S_{n}$.
(c) Prove that $f=f\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right) d$ where d is the function given in the first problem.
4. Suppose R is a unital commutative ring, n is a positive integer, and $A \in \mathrm{M}_{n}(R)$. Let

$$
f_{A}: R^{n} \times \cdots \times R^{n} \rightarrow R, f_{A}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right):=d\left(A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}\right)
$$

where d is the function given in problem 1. Let

$$
\operatorname{det}: \mathrm{M}_{n}(R) \rightarrow \operatorname{det}(X):=d\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)
$$

where \mathbf{x}_{j} is the j-th column of X.
(a) Prove that f_{A} is n-linear and alternating.

For any choice of i and vectors $\mathbf{v}_{i}, \mathbf{v}_{i}^{\prime}$ and $c \in R$ we have

$$
\begin{aligned}
f_{A}\left(\mathbf{v}_{1}, \ldots,\right. & \left.\mathbf{v}_{i-1}, \mathbf{v}_{i}+c \mathbf{v}_{i}^{\prime}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{n}\right)=d\left(A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{i-1}, A\left(\mathbf{v}_{i}+c \mathbf{v}_{i}^{\prime}\right), A \mathbf{v}_{i+1}, \ldots, A \mathbf{v}_{n}\right) \\
& =d\left(A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{i-1}, A \mathbf{v}_{i}+c A \mathbf{v}_{i}^{\prime}, A \mathbf{v}_{i+1}, \ldots, A \mathbf{v}_{n}\right) \\
& =d\left(A \mathbf{v}_{1} \ldots, A \mathbf{v}_{i-1}, A \mathbf{v}_{i}, A \mathbf{v}_{i+1}, \ldots, A \mathbf{v}_{n}\right)+c d\left(A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{i-1}, A \mathbf{v}_{i}^{\prime}, A \mathbf{v}_{i+1}, \ldots, A \mathbf{v}_{n}\right) \\
& =f_{A}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{n}\right)+c f_{A}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i}^{\prime}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{n}\right)
\end{aligned}
$$

where we've used the fact that d is n-linear. The fact that f_{A} is alternating follows similarly from the fact that d is alternating.
(b) Prove that $f_{A}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\operatorname{det}(A X)$ where \mathbf{x}_{j} is the j-th column of X.
(c) Prove that $\operatorname{det}(X Y)=\operatorname{det}(X) \operatorname{det}(Y)$ for every $X, Y \in \mathrm{M}_{n}(R)$.

From part (a), we know f_{X} is n-linear and alternating, which lets us apply problem 3 to se that $f_{X}=f_{X}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right) d$; notice that by definition $f_{X}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right)=d\left(X \mathbf{e}_{1}, \ldots, X \mathbf{e}_{n}\right)=$ $d\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ where $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are the columns of X. Now using part (b), if we let $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$ denote the columns of Y we have
$\operatorname{det}(X Y)=f_{X}\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right)=f_{X}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right) d\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right)=d\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) d\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right)=\operatorname{det}(X) \operatorname{det}(Y)$.
(d) For $X \in \mathrm{M}_{n}(R)$ and indexes i, j, let $X_{i j}$ be the $(n-1)$-by- $(n-1)$ matrix that we obtain after dropping the i-th row and the j-th column of X. Use (1) and prove that

$$
\operatorname{det}(X)=\sum_{k=1}^{n}(-1)^{j+k} x_{k j} \operatorname{det}\left(X_{k j}\right)
$$

(e) For $X \in \mathrm{M}_{n}(R)$, we define the adjoint $\operatorname{adj}(X)$ of X as an n-by- n matrix with the (j, k)-entry equals to $(-1)^{j+k} \operatorname{det}\left(X_{k j}\right)$, where $X_{k j}$ is as in the previous part. Use the previous part to show

$$
\operatorname{adj}(X) X=\operatorname{det}(X) I
$$

Let $a_{i j}=(-1)^{i+j} \operatorname{det}\left(X_{j i}\right)$ denote the (i, j)-th entry of $\operatorname{adj}(X)$. The (i, j)-th entry of $\operatorname{adj}(X) X$ is by definition given by

$$
\sum_{k=1}^{n} a_{i k} x_{k j}=\sum_{k=1}^{n}(-1)^{i+k} x_{k j} \operatorname{det}\left(X_{k i}\right)
$$

One can immediately see from part (d) that if $i=j$ then this is equal to $\operatorname{det}(X)$, so we just need to show this quantity is zero when $i \neq j$. For this, let $X^{\prime}=\left(x_{p q}^{\prime}\right)$ denote the matrix obtained by replacing the i-th column of X by the j-th column, i.e.

$$
x_{p q}^{\prime}:= \begin{cases}x_{p q} & \text { if } q \neq i \\ x_{p j}, & \text { if } q=i\end{cases}
$$

Then taking the expansion on the i-th column (i.e. applying (d)) we have

$$
\operatorname{det}\left(X^{\prime}\right)=\sum_{k=1}^{n}(-1)^{i+k} x_{k i}^{\prime} \operatorname{det}\left(X_{k i}^{\prime}\right)=\sum_{k=1}^{n}(-1)^{i+k} x_{k j} \operatorname{det}\left(X_{k i}\right)
$$

and this is exactly equal to the (i, j)-th entry of $\operatorname{adj}(X) X$ as above, but we see that this quantity is zero because X^{\prime} has a repeated column, so $\operatorname{det}\left(X^{\prime}\right)=0$. This gives the result.
(f) Justify why $\operatorname{det}(X)=\operatorname{det}\left(X^{t}\right)$ where X^{t} is the transpose of X, and deduce that we could work with rows of X instead of its columns, and we obtain

$$
\operatorname{det}(X)=\sum_{j=1}^{n}(-1)^{j+k} x_{k j} \operatorname{det}\left(X_{k j}\right)
$$

and so

$$
X \operatorname{adj}(X)=\operatorname{det}(X) I
$$

9. Week 9

1. For a finite abelian group A, let \widehat{A} be its dual group.
(a) Suppose A_{1} and A_{2} are two finite abelian groups. Prove that $\widehat{A_{1} \times A_{2}} \simeq \widehat{A_{1}} \times \widehat{A_{2}}$.

Solution. Given a homomorphism $\chi: A_{1} \times A_{2} \rightarrow S^{1}$, one can consider the associated homomorphism $\chi_{1}: A_{1} \rightarrow S^{1}$ defined by $\chi_{1}\left(a_{1}\right)=\chi\left(a_{1}, 1\right)$, and similarly one has $\chi_{2}: A_{2} \rightarrow S^{1}$ given by $\chi_{2}\left(a_{2}\right)=\chi\left(1, a_{2}\right)$. If one defines a function

$$
\widehat{A_{1} \times A_{2}} \rightarrow \widehat{A_{1}} \times \widehat{A_{2}}, \quad \chi \mapsto\left(\chi_{1}, \chi_{2}\right)
$$

then one can easily verify this is an injective homomorphism. In addition, one has

$$
\left|\widehat{A_{1} \times A_{2}}\right|=\left|A_{1} \times A_{2}\right|=\left|A_{1}\right|\left|A_{2}\right|=\left|\widehat{A_{1}}\right|\left|\widehat{A_{2}}\right|=\left|\widehat{A_{1}} \times \widehat{A_{2}}\right|
$$

and from this we conclude the map we've defined is actually an isomorphism.
(b) Suppose A is a finite cyclic group. Prove that \widehat{A} is a cyclic group and deduce that $A \simeq \widehat{A}$.

Solution. Write $A=\langle a\rangle$ and $n=|A|$. Notice that for any $\chi \in \widehat{A}$ one has

$$
\chi(a)^{n}=\chi\left(a^{n}\right)=\chi(1)=1
$$

so $\chi(a) \in S^{1}$ is an n-th root of unity. Let M_{n} denote the n-th roots of unity in S^{1}, which we know to be a cyclic group of order n. Our previous remark means that we have a function

$$
\widehat{A} \rightarrow M_{n}, \quad \chi \mapsto \chi(a)
$$

We claim this is an injective homomorphism; if this is the case, then we are done as it proves \widehat{A} is a cyclic group, and we know that $|\widehat{A}|=|A|$. To see the claim, we first need to show it is a homomorphism, which amounts to the claim that $\left(\chi \chi^{\prime}\right)(a)=\chi(a) \chi^{\prime}(a)$, and this is simply from the definition of the group operation on \widehat{A}. For injectivity, one has that $\chi(a)=1$ implies $\chi\left(a^{k}\right)=\chi(a)^{k}=1$ for any k, which implies χ is the trivial homomorphism, i.e. the identity element of \widehat{A}. This shows injectivity and so we are done.
Notice that there is not a single choice of isomorphism $A \simeq \widehat{A}$ we have come up with in this proof; rather, we have that both A and \widehat{A} are cyclic of the same order, we know that if we let a be a generator of A and χ a generator of \widehat{A}, then we can get an isomorphism $A \simeq \widehat{A}$ by sending $a \mapsto \chi$. The fact that this depends heavily on some choices of generators is sometimes phrased as the two groups being non-canonically isomorphic. You should compare this with the case of the isomorphism $A \simeq \widehat{\widehat{A}}$, which really is an explicit isomorphism (that does not require any choices); the latter one would often call canonical.
(c) Suppose A is a finite abelian group. Prove $A \simeq \widehat{A}$.

Solution. By the classification of finite abelian groups, one has $A \simeq \mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{r}}$ for some integers $d_{i} \in \mathbb{Z}^{+}$. Then using the previous two parts one has

$$
\widehat{A} \simeq \mathbb{Z}_{d_{1}} \times \widehat{\times \cdots} \mathbb{Z}_{d_{r}}=\widehat{\mathbb{Z}_{d_{1}}} \times \cdots \times \widehat{\mathbb{Z}_{d_{r}}} \simeq \mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{r}} \simeq A
$$

2. Suppose A_{i} 's are square matrices with entries in a unital commutative ring R. Prove that

$$
\operatorname{det}\left(\begin{array}{cccc}
A_{1} & * & \cdots & * \\
& A_{2} & \cdots & * \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & A_{n}
\end{array}\right)=\prod_{i=1}^{n} \operatorname{det} A_{i}
$$

Solution. Using a straightforward induction argument, it suffices to prove the $n=2$ case. In this case we write A for the matrix in question, and write its entries as $A=\left[v_{i j}\right]_{1 \leq i, j \leq m}$ so

$$
A_{1}=\left(\begin{array}{ccc}
v_{11} & \cdots & v_{1 \ell} \\
\vdots & \ddots & \vdots \\
v_{\ell 1} & \cdots & v_{\ell \ell}
\end{array}\right) \quad \text { and } \quad A_{2}=\left(\begin{array}{ccc}
v_{\ell+1, \ell+1} & \cdots & v_{\ell+1, m} \\
\vdots & \ddots & \vdots \\
v_{m 1} & \cdots & v_{m m}
\end{array}\right)
$$

for some ℓ with $v_{i j}=0$ whenever $i \in[1, \ell]$ and $j \in[\ell+1, m]$. Recall by definition the determinant of our matrix is a sum over products of elements $v_{\sigma(j) j}$ for $\sigma \in S_{m}$ and $j \in[1, m]$; notice if $\sigma(\{1, \ldots, \ell\}) \nsubseteq\{1, \ldots, \ell\}$ then there exists some $j \in[1, \ell]$ with $\sigma(j) \in[\ell+1, m]$ and so $v_{\sigma(j) j}=0$. As a result one has

$$
\operatorname{det} A=\sum_{\sigma \in S_{m}} \operatorname{sgn}(\sigma) \prod_{j=1}^{m} v_{\sigma(j) j}=\sum_{\substack{\sigma \in S_{m} \\ \sigma(\{1, \ldots, \ell\})=\{1, \ldots, \ell\}}} \operatorname{sgn}(\sigma) \prod_{j=1}^{m} v_{\sigma(j) j}
$$

Now notice that an element $\sigma \in S_{m}$ with $\sigma(\{1, \ldots, \ell\})=\{1, \ldots, \ell\}$ also satisfies $\sigma(\{\ell+1, \ldots, m\})=$ $\{\ell+1, \ldots, m\}$. As a result any such σ is equal to $\sigma_{1} \sigma_{2}$ for $\sigma_{1} \in S_{\{1, \ldots, \ell\}}$ and $\sigma_{2} \in S_{\{\ell+1, \ldots, m\}}$ (and conversely, any such product $\sigma=\sigma_{1} \sigma_{2}$ satisfies $\left.\sigma(\{1, \ldots, \ell\})=\{1, \ldots, \ell\}\right)$, so we can upgrade the above equality to

$$
\begin{aligned}
\operatorname{det} A & =\sum_{\sigma_{1} \in S_{\{1, \ldots, \ell\}}, \sigma_{2} \in S_{\{\ell+1, \ldots, m\}}} \operatorname{sgn}\left(\sigma_{1} \sigma_{2}\right) \prod_{j=1}^{m} v_{\left(\sigma_{1} \sigma_{2}\right)(j) j} \\
& =\sum_{\sigma_{1} \in S_{\{1, \ldots, \ell\}}, \sigma_{2} \in S_{\{\ell+1, \ldots, m\}}}\left(\operatorname{sgn}\left(\sigma_{1}\right) \prod_{j=1}^{\ell} v_{\sigma_{1}(j) j}\right)\left(\operatorname{sgn}\left(\sigma_{2}\right) \prod_{j=\ell+1}^{m} v_{\sigma_{2}(j) j}\right) \\
& =\left(\sum_{\sigma_{1} \in S_{\{1, \ldots, \ell\}}} \operatorname{sgn}\left(\sigma_{1}\right) \prod_{j=1}^{\ell} v_{\sigma(j) j}\right)\left(\sum_{\sigma_{2} \in S_{\{\ell+1, \ldots, m\}}} \operatorname{sgn}\left(\sigma_{2}\right) \prod_{j=\ell+1}^{m} v_{\sigma_{2}(j) j}\right) \\
& =\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right) .
\end{aligned}
$$

3. Recall an element a of a ring is called nilpotent if $a^{k}=0$ for some positive integer k.
(a) Suppose F is a field and $A \in M_{n}(F)$ is nilpotent. Prove that the characteristic polynomial of A is x^{n}, and deduce that $A^{n}=0$.
Solution. By assumption $A^{k}=0$ for some $k \in \mathbb{Z}^{+}$. This means $p(A)=0$ for $p(x)=x^{k} \in F[x]$; as a result one has that $m_{A, F}(x) \mid x^{k}$. By unique factorization we see that $m_{A, F}$ is a power of x. Now if we consider a rational canonical form of A (or, rather, let $T: F^{n} \rightarrow F^{n}$ be the linear map determined by A with respect to the standard basis and consider a rational canonical form of T), then we obtain polynomials $p_{1}\left|p_{2}\right| \cdots \mid p_{r}$ with $p_{r}=m_{T, F}=m_{A, F}$ and $f_{A}=f_{T}=\prod_{i} p_{i}$. From the fact that $p_{i} \mid m_{A, F}$ for each i we have that each p_{i} is a power of x, but then also $f_{A}=\prod_{i} p_{i}$ is a power of x as well. But $\operatorname{deg}\left(f_{A}\right)=n$ so we find $f_{A}(x)=x^{n}$ as desired. The latter claim follows because any matrix satisfies its characteristic polynomial.
(b) Suppose R is a commutative unital ring. Suppose $A \in M_{n}(R)$ is nilpotent and P is a prime ideal of R. Prove that all the entries of A^{n} are in P.

Solution. Recall that R / P is an integral domain, so one can consider $F=Q(R / P)$ for which one has an embedding $A / P \hookrightarrow F$. If we consider the composition of ring homomorphisms

$$
M_{n}(R) \rightarrow M_{n}(R / P) \hookrightarrow M_{n}(F),
$$

and call this π, then one sees that $\pi(A)$ is nilpotent because A is, and then (a) implies that $\pi(A)^{n}=0$ in $M_{n}(F)$, i.e. $\pi\left(A^{n}\right)=0$ in $M_{n}(F)$, which implies $\pi\left(A^{n}\right)=0$ in $M_{n}(R / P)$, which implies all entries of A^{n} are inside P.
(c) Suppose R is a unital commutative ring which has no nonzero nilpotent elements. Suppose $A \in M_{n}(R)$ is nilpotent. Prove that $A^{n}=0$.

Solution. We know from (b) that if P is any prime ideal of R, then all entries of A^{n} lie in R, in other words each entry of A^{n} lies in the intersection of all prime ideals of R, which we've seen in class is exactly the set of nilpotent elements of A. Because A has no nonzero nilpotent elements, we conclude that all entries of A^{n} are zero, i.e. $A^{n}=0$.
4. Suppose E / F is a finite Galois extension and $\operatorname{Aut}_{F}(E)=\langle\sigma\rangle$ is a cyclic group of order n. For $a \in E$, let $\tau_{a}: E \rightarrow E, \tau_{a}(e):=a \sigma(e)$. Notice that t_{a} is an F-linear map.
(a) Prove that the minimal polynomial of τ_{a} is $p(x):=x^{n}-N_{E / F}(a)$.

Solution. One can show with a straightforward induction on k that $\tau_{a}^{k}(e)=\left(\prod_{i=0}^{k-1} \sigma^{i}(a)\right) \sigma^{k}(e)$. In particular one finds $\tau_{a}^{n}(e)=\left(\prod_{i=0}^{n-1} \sigma^{i}(a)\right) \sigma^{n}(e)=N_{E / F}(a) e$; we conclude $\tau_{a}^{n}-N_{E / F}(a)$ is the zero linear transformation, so the minimal polynomial of τ_{a} divides $x^{n}-N_{E / F}(a)$. We claim this is the smallest possible degree; for this, suppose one has

$$
c_{n-1} \tau_{a}^{n-1}+\cdots+c_{1} \tau_{a}+c_{0} \mathrm{id}=0
$$

for $c_{i} \in F$. Recalling our description of τ_{a}^{k} and writing $a_{k}:=\prod_{i=0}^{k-1} \sigma^{i}(a)$, we have for $e \in E$

$$
0=c_{n-1} \tau_{a}^{n-1}(e)+\cdots+c_{0} \operatorname{id}(e)=\left(a_{n-1} c_{n-1}\right) \sigma^{n-1}(e)+\cdots+\left(a_{1} c_{1}\right) \sigma(e)+\left(a_{0} c_{0}\right) e .
$$

Now thinking of the σ^{k} as homomorphisms $E^{\times} \rightarrow E^{\times}$(which are distinct for $k=0, \ldots, n-1$) and using independence of characters, we deduce that each $a_{k} c_{k}=0$ for $k \in[0, n-1]$; now noticing that $a_{k} \neq 0$, we have $c_{k}=0$ for each k. This shows our original claim that τ_{a} does not satisfy any polynomial of degree $<n$, so we conclude $x^{n}-N_{E / F}(a)$ is the minimal polynomial of τ_{a}.
(b) Prove that the companion $C(p)$ of the polynomial $p(x)=x^{n}-N_{E / F}(a)$ is a rational canonical form of τ_{a}.

Solution. We have seen in class that there is a rational canonical form of τ_{a} of the form

$$
\left(\begin{array}{ccc}
C\left(d_{1}\right) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & C\left(d_{r}\right)
\end{array}\right)
$$

where $d_{i} \in F[x]$ satisfy $d_{1}\left|d_{2}\right| \cdots \mid d_{r}, d_{r}=m_{\tau_{a}, F}$ and $f_{\tau_{a}}=\prod_{i=1}^{r} d_{i}$. Using (a) then we see $d_{r}=$ p, and the latter claim in particular says $d_{r} \mid f_{\tau_{a}}$, but we have $\operatorname{deg}\left(d_{r}\right)=\operatorname{deg}(p)=n=\operatorname{deg}\left(f_{\tau_{a}}\right)$, so we conclude by comparing degrees that $f_{\tau_{a}}=d_{r}=p$ and $r=1$. In particular we see that $C\left(d_{r}\right)=C(p)$ is a rational canonical form of τ_{a}.
(c) (Hilbert's theorem 90) Suppose $N_{E / F}(a)=1$ and argue why $C(p)\left(\mathbf{e}_{1}+\cdots+\mathbf{e}_{n}\right)=\mathbf{e}_{1}+\cdots+\mathbf{e}_{n}$. Deduce that $a=\frac{e}{\sigma(e)}$ for some $e \in E$.

Solution. If $N_{E / F}(a)=1$, using (a) one has $p(x)=x^{n}-1$, and so

$$
C(p)=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right)
$$

As a result we see that $C(p)\left(\mathbf{e}_{i}\right)=\mathbf{e}_{i+1}$ for each i (with $C(p)\left(\mathbf{e}_{n}\right)=\mathbf{e}_{1}$), and from this it is clear that $C(p)\left(\mathbf{e}_{1}+\cdots+\mathbf{e}_{n}\right)=\mathbf{e}_{1}+\cdots+\mathbf{e}_{n}$.

This tells us that the matrix $C(p)$ has a fixed point, so τ_{a} must also have a fixed point; if we call it e then $\tau_{a}(e)=e$ means $a \sigma(e)=e$, or $a=\frac{e}{\sigma(e)}$, as desired.
(d) Use part (b) for $\tau_{1}=\sigma$ and prove that there is $e_{0} \in E$ such that $\mathfrak{B}_{0}:=\left\{e_{0}, \sigma\left(e_{0}\right), \ldots, \sigma^{n-1}\left(e_{0}\right)\right\}$ is an F-basis of E.

Solution. For $a=1$ we see σ has a rational canonical form given by $C(p)$ where $p(x)=x^{n}-1$, i.e. (as above)

$$
C(p)=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 .
\end{array}\right)
$$

The rational canonical form of a linear transformation is a matrix representation with respect to a particular basis, which means there is an F-basis $\mathfrak{B}=\left\{e_{0}, e_{1}, \ldots, e_{n-1}\right\}$ of E with respect to which $C(p)$ represents σ. But one can clearly see from the matrix reprentation that $e_{1}=\sigma\left(e_{0}\right)$, and then $e_{2}=\sigma\left(e_{1}\right)=\sigma^{2}\left(e_{0}\right)$, and similarly $e_{i}=\sigma^{i}\left(e_{0}\right)$ for each $i \in[0, n-1]$, which shows this matrix \mathfrak{B} is of the desired form.
5. Suppose E / F is a finite Galois extension and $\operatorname{Aut}_{F}(E)=\langle\sigma\rangle$ is a cyclic group of order n. For $a \in E$, let $T_{E / F}(a):=a+\sigma(a)+\cdots+\sigma^{n-1}(a)$.
(a) Suppose \mathfrak{B}_{0} is the F-basis of E given in $4(\mathrm{~d})$. Notice that $[\sigma]_{\mathfrak{B}_{0}}$ is the companion matrix of $x^{n}-1$. Prove that $T_{E / F}(a)=0$ if and only if $c_{1}+\cdots+c_{n}=0$ where $[a]_{\mathfrak{B}_{0}}=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$.
Solution. From the description of $[\sigma]_{\mathfrak{B}_{0}}$ one can quickly see that

$$
[\sigma]_{\mathfrak{B}_{0}}\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
c_{n} \\
c_{1} \\
\vdots \\
c_{n-1}
\end{array}\right) \quad \text { and } \quad\left[\sigma^{2}\right]_{\mathfrak{B}_{0}}\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
c_{n-1} \\
c_{n} \\
\vdots \\
c_{n-2}
\end{array}\right)
$$

and continuing one sees that

$$
\left[T_{E / F}\right]_{\mathfrak{B}_{0}}\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
c_{1}+\cdots+c_{n} \\
c_{1}+\cdots+c_{n} \\
\vdots \\
c_{1}+\cdots+c_{n}
\end{array}\right)
$$

Thus if $a \in E$ with $[a]_{\mathfrak{B}_{0}}=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$, one has

$$
T_{E / F}(a)=0 \Longleftrightarrow\left[T_{E / F}\right]_{\mathfrak{B}_{0}}\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=0 \Longleftrightarrow c_{1}+\cdots+c_{n}=0
$$

(b) Suppose for $c_{1}, \ldots, c_{n} \in F$ we have $\sum_{i=1}^{n} c_{i}=0$. Prove that

$$
\left(\begin{array}{cccccc}
-1 & 0 & 0 & \cdots & 0 & 1 \\
1 & -1 & 0 & \cdots & 0 & 0 \\
0 & 1 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & 0 \\
0 & 0 & 0 & \cdots & 1 & -1
\end{array}\right) \mathbf{x}=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)
$$

has a solution in F^{n}.
Solution. This is the same as solving the system of equations

$$
\begin{gathered}
x_{2}-x_{1}=c_{1} \\
x_{3}-x_{2}=c_{2} \\
\vdots \\
x_{n}-x_{n-1}=c_{n-1} \\
x_{1}-x_{n}=c_{n}
\end{gathered}
$$

for values $x_{1}, \ldots, x_{n} \in F$. If one lets x_{1} be any value, then the rest of the values are automatically determined from the equations and determine a valid solution; for example if we take for simplicity $x_{1}=0$ then $x_{2}=c_{1}, x_{3}=c_{1}+c_{2}$ and for each $i, x_{i}=c_{1}+\cdots+c_{i-1}$, and in particular $x_{n}=c_{1}+\cdots+c_{n-1}=-c_{n}$ which shows the final necessary equality holds above.
(c) (Additive Hilbert's theorem 90) Suppose $a \in E$ such that $T_{E / F}(a)=0$. Prove that there is $e \in E$ such that $\sigma(e)-e=a$.

Notice the matrix from part (b) represents the linear transformation σ-id with respect to the basis \mathfrak{B}_{0} from (a). If $T_{E / F}(a)=0$ then from (a) one has $[a]_{\mathfrak{B}_{0}}=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$ with $c_{1}+\cdots+c_{n}=0$, and then (b) guarantees an element $\mathbf{x} \in F^{n}$ with $[\sigma-\mathrm{id}]_{\mathfrak{B}_{0}} \mathbf{x}=[a]_{\mathfrak{B}_{0}}$. One has $\mathbf{x}=[e]_{\mathfrak{B}_{0}}$ for some $e \in E$, and then for this e we see that $(\sigma-\mathrm{id})(e)=a$, i.e. $\sigma(e)-e=a$ as desired.

10. Week 1

1. Suppose A is a unital commutative ring, n is a positive integer, and $f: A^{n} \rightarrow A^{n}$ is a surjective A-module homomorphism.
(a) Suppose A is a Noetherian ring.
(i) Argue why A^{n} is a Noetherian A-module.

Solution. Notice that A^{n} is generated by \mathbf{e}_{i} 's as an A-module. Hence A^{n} is a finitely generated A-module. By Theorem 38.1.2, every finitely generated module over a Noetherian ring is a Noetherian module. Hence A^{n} is a Noetherian A-module.

OUTLINE OF SOLUTIONS OF SOME OF THE ASSIGNMENTS
(ii) Show that there is an integer n_{0} such that for every integer $i \geq n_{0}$, $\operatorname{ker} f^{\left(n_{0}\right)}=\operatorname{ker} f^{(i)}$.

Solution. We have an increasing chain of submodules of A^{n} given by

$$
\operatorname{ker} f \subseteq \operatorname{ker} f^{(2)} \subseteq \cdots \subseteq \operatorname{ker} f^{(n)} \subseteq \cdots
$$

so part (a) implies that there is some n_{0} for which $\operatorname{ker} f^{\left(n_{0}\right)}=\operatorname{ker} f^{(i)}$ as desired.
(iii) Suppose $\mathbf{x} \in \operatorname{ker} f^{\left(n_{0}\right)}$. Argue that $\mathbf{x}=f^{\left(n_{0}\right)}(\mathbf{y})$ for some \mathbf{y}. Deduce that $\mathbf{y} \in \operatorname{ker} f^{\left(2 n_{0}\right)}$. Use this to show that $\mathbf{x}=0$.
Solution. Because f is surjective, then so is $f^{(n)}$ for any n; in particular $f^{\left(n_{0}\right)}$ is surjective so there exists some $\mathbf{y} \in A^{n}$ such that $\mathbf{x}=f^{\left(n_{0}\right)}(\mathbf{y})$. But then notice that $f^{\left(2 n_{0}\right)}(\mathbf{y})=$ $f^{\left(n_{0}\right)}\left(f^{\left(n_{0}\right)}(\mathbf{y})\right)=f^{\left(n_{0}\right)}(\mathbf{x})=0$, so $\mathbf{y} \in \operatorname{ker} f^{\left(2 n_{0}\right)}$. But from part (b) we have $\operatorname{ker} f^{\left(2 n_{0}\right)}=$ $\operatorname{ker} f^{\left(n_{0}\right)}$, so $\mathbf{y} \in \operatorname{ker} f^{\left(n_{0}\right)}$, and then $\mathbf{x}=f^{\left(n_{0}\right)}(\mathbf{y})=0$.
(iv) Prove that f is an isomorphism.

Solution. In part (c) we showed that $\operatorname{ker} f^{\left(n_{0}\right)}=0$, but then also $\operatorname{ker} f=0$, i.e. f is injective, hence an isomorphism.
(b) Suppose A is an arbitrary unital commutative ring.
(i) Show that there are $M_{f}=\left[a_{i j}\right] \in M_{n}(A)$ and $M^{\prime}=\left[a_{i j}^{\prime}\right] \in M_{n}(A)$ such that

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(\sum_{j=1}^{n} a_{1 j} x_{n}, \ldots, \sum_{j=1}^{n} a_{n j} x_{n}\right)
$$

and $M_{f} M^{\prime}=I_{n}$. Argue that f is an isomorphism if and only if $M_{f} \in \mathrm{GL}_{n}(A)$.
Solution. Let $\mathbf{e}_{j}=(0, \ldots, 0,1,0, \ldots, 0)$ with a 1 in the j-th position; then the $a_{i j}$ desired are exactly the elements such that $f\left(\mathbf{e}_{j}\right)=\left(a_{1 j}, \ldots, a_{n j}\right)$. The formula for f follows from expanding linearly:

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n}\right) & =f\left(\sum_{j} x_{j} \mathbf{e}_{j}\right)=\sum_{j} x_{j} f\left(\mathbf{e}_{j}\right) \\
& =\sum_{j} x_{j}\left(a_{1 j}, \ldots, a_{n j}\right) \\
& =\left(\sum_{j} a_{1 j} x_{j}, \ldots, \sum_{j} a_{n j} x_{j}\right) .
\end{aligned}
$$

To find the desired elements $a_{i j}^{\prime}$, we use the fact that f is linear, so for each j there is some element $\left(a_{1 j}^{\prime}, \ldots, a_{n j}^{\prime}\right) \in A^{n}$ such that $f\left(a_{1 j}^{\prime}, \ldots, a_{n j}^{\prime}\right)=\mathbf{e}_{j}$. To see the identity $M_{f} M^{\prime}=I_{n}$, it suffices to check that $\left(M_{f} M^{\prime}\right) \cdot \mathbf{e}_{j}=\mathbf{e}_{j}$ for each j (where we consider \mathbf{e}_{j} as a column vector); this follows from the choice of $a_{i j}^{\prime}$, more precisely

$$
\left(M_{f} M^{\prime}\right) \cdot \mathbf{e}_{j}=M_{f} \cdot\left(M^{\prime} \cdot \mathbf{e}_{j}\right)=M_{f} \cdot\left(\begin{array}{c}
a_{1 j}^{\prime} \\
\vdots \\
a_{n j}^{\prime}
\end{array}\right)=\mathbf{e}_{j}
$$

The main point of the last claim is that M_{f} is a matrix representation of the homomorphism f, so M_{f} is invertible if and only if f is; more precisely, if M_{f} is an isomorphism, then an inverse matrix M_{f}^{-1} defines an A-module homomorphism $A^{n} \rightarrow A^{n}$ by matrix multiplication, which will be an inverse for f, and conversely if f is an isomorphism then we could choose a matrix representation for f^{-1} (in the same way we constructed M_{f} here), which will be an inverse for M_{f}.
(ii) Let A^{\prime} be the subring of A which is generated by the $a_{i j}$'s and $a_{i j}^{\prime}$'s. Argue that

$$
M_{f} \times: M_{n, 1}\left(A^{\prime}\right) \rightarrow M_{n, 1}\left(A^{\prime}\right), \quad \mathbf{x} \mapsto M_{f} \mathbf{x}
$$

is a surjective A^{\prime}-module homomorphism.
Solution. Notice the fact that M_{f} has entries in A^{\prime} implies the map is well-defined, i.e. it actually sends elements of $M_{n, 1}\left(A^{\prime}\right)$ to $M_{n, 1}\left(A^{\prime}\right)$. Checking the map is a homomorphism is straightforward. For surjectivity we use $M_{f} M^{\prime}=I_{n}$: for any $\mathbf{y} \in M_{n, 1}\left(A^{\prime}\right)$ one has

$$
\mathbf{y}=\left(M_{f} M^{\prime}\right) \cdot \mathbf{y}=M_{f} \cdot\left(M^{\prime} \cdot \mathbf{y}\right)
$$

which shows that $M^{\prime} \cdot \mathbf{y}$ is a preimage of \mathbf{y} under the given homomorphism (notice that $M^{\prime} \cdot \mathbf{y} \in M_{n, 1}\left(A^{\prime}\right)$ holds because M^{\prime} and \mathbf{y} both have entries all inside A^{\prime}).
(iii) Prove that $M_{f} \in \operatorname{GL}_{n}\left(A^{\prime}\right)$ and deduce that f is an isomorphism.

Solution. By Theorem 41.3.5, every finitely generated ring is Noetherian, and so A^{\prime} is Noetherian. But then we see that we can apply part $1(a)$, where we have seen that in the Noetherian situation, a surjective module homomorphism $\left(A^{\prime}\right)^{n} \rightarrow\left(A^{\prime}\right)^{n}$ is an isomorphism. Thus $M_{f} \times: M_{n, 1}\left(A^{\prime}\right) \rightarrow M_{n, 1}\left(A^{\prime}\right)$ is an isomorphism, so $M_{f} \in \mathrm{GL}_{n}\left(A^{\prime}\right) \subseteq$ $\mathrm{GL}_{n}(A)$, and thus $M_{f} \in \mathrm{GL}_{n}(A)$ which we have remarked in part (i) implies f is an isomorphism.

