
OUTLINE OF SOLUTIONS OF SOME OF THE ASSIGNMENTS

1. Week 1

1. Prove that AutQ(Q[ 3
√

2]) = {id}.

Outline of solution. Suppose θ ∈ AutQ(Q[ 3
√

2]). Because 3
√

2 is a zero of x3 − 2 ∈ Q[x], one also

has that θ( 3
√

2) is a zero of x3 − 2, but then θ( 3
√

2) = ζi3
3
√

2 for some i ∈ {0, 1, 2}. If i 6= 0 then

one has ζi3
3
√

2 ∈ Q[ 3
√

2] and then by dividing you can conclude ζi3 ∈ Q[ 3
√

2]. Now one can obtain a
contradiction using tower law.

Alternatively you can say that Q[ 3
√

2] ⊆ R, but for i ∈ {1, 2} the element ζi3 is not in R.

2. Suppose p is prime and ζp := e2πi/p. Prove that

AutQ(Q[ζp,
p
√

2]) '
{(

a b
0 1

)
| a ∈ Z×p , b ∈ Zp

}
.

Solution. We will define a function f : AutQ(Q[ζp,
p
√

2]) →
{(a b

0 1

)
| a ∈ Z×p , b ∈ Zp

}
: to this

end let θ ∈ AutQ(Q[ζp,
p
√

2]). Notice that θ must send ζp to another root of Φp(x), i.e. we must have

θ(ζp) = ζip for some i ∈ Z coprime to p. Simiarly θ( p
√

2) must be a root of xp − 2, so θ( p
√

2) = ζjp
p
√

2

for some j ∈ Z. We then define f(θ) =

(
[i]p [j]p
0 1

)
. To see this is well-defined we notice that

[i]p ∈ Z×p because gcd(i, p) = 1, and if ζip = ζi
′

p then i ≡ i′ (mod p); similarly if ζjp
p
√

2 = ζj
′

p
p
√

2 then
j ≡ j′ (mod p).

We claim f is a homomorphism: for this let θ, θ′ ∈ AutQ(Q[ζp,
p
√

2]), say with θ(ζp) = ζip, θ(
p
√

2) =

ζjp
p
√

2, θ′(ζp) = ζi
′

p and θ′( p
√

2) = ζj
′

p
p
√

2. Then we calculate

(θ ◦ θ′)(ζp) = θ(θ′(ζp)) = θ(ζi
′

p ) = θ(ζp)
i′ = (ζip)

i′ = ζii
′

p ,

and

(θ ◦ θ′)( p
√

2) = θ(θ′(
p
√

2)) = θ(ζj
′

p
p
√

2) = θ(ζp)
j′θ(

p
√

2) = (ζip)
j′(ζjp

p
√

2) = ζij
′+j

p
p
√

2.

Thus we see that

f(θ ◦ θ′) =

(
[ii′]p [ij′ + j]p

0 1

)
=

(
[i]p [j]p
0 1

)(
[i′]p [j′]p

0 1

)
= f(θ)f(θ′).

This shows f is a homomorphism. We now notice that f is injective, because if f(θ) = I then this

means that θ(ζp) = ζp and θ( p
√

2) = p
√

2, but then θ = id.

Finally we notice that, because Q[ζp,
p
√

2] is the splitting field over Q of the separable polynomial

xp − 2 ∈ Q[x], we have from class that |AutQ(Q[ζp,
p
√

2])| = [Q[ζp,
p
√

2] : Q] = p(p − 1), where the
latter equality is a calculation we’ve made in a previous homework. Thus the two groups in question
have the same size, so f being injective implies it is surjective as well, and then f is an isomorphism.

3. Suppose F is a field.
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2 OUTLINE OF SOLUTIONS OF SOME OF THE ASSIGNMENTS

(a) Suppose f(x) ∈ F [x] is irreducible. Prove that f is not separable if and only if f ′(x) = 0.

Outline of solution. If f ′(x) = 0 then for c = ld(f) we have gcd(f, f ′) equals f up to a unit in
particular it is not equal to 1 so f is separable. On the other hand, if f ′(x) 6= 0 and gcd(f, f ′) 6= 1
then using the fact that f is irreducible one can show that gcd(f, f ′) equals f up to a unit, and
then f |f ′ which is a contradiction by degree considerations.

(b) Prove that if char(F ) = 0 then every non-constant polynomial in F [x] is separable.

Outline of solution. By definition of separable polynomial, one just needs to consider irreducible
polynomials. If we have an irreducible polynomial f(x) then necessarily f ′(x) 6= 0 (i.e. f ′(x)
is not the zero polynomial), because we are in characteristic 0. Then one applies part (a) to
deduce f(x) is separable.

(c) Suppose char(f) = p is prime. Suppose f0 ∈ F [x] is irreducible and non-separable. Prove that
f0(x) = f1(xp) for some irreducible polynomial f1 ∈ F [x].

Outline of solution. By part (a) we have f ′0(x) = 0. If we write f0(x) =
∑n
i=0 aix

i, then

f ′0(x) =
∑n−1
i=0 (iai)x

i−1. Now for any i such that ai 6= 0, deduce that i = 0 in F , and then using

char(F ) = p deduce p|i for any such i. Thus for each i with ai 6= 0 we have xi = (xp)i/p and
then one sees that f0(x) is a polynomial in xp. More precisely for any ai 6= 0 (so one has p|i)
one can let bi/p := ai, and bj = 0 other wise, and then one can take f1(x) =

∑
i bix

i. The fact
that f0 is irreducible implies f1 is irreducible, because a factorization f1(x) = g(x)h(x) would
lead to a factorization f0(x) = g(xp)h(xp).

(d) Suppose char(f) = p is prime. Suppose f0 ∈ F [x] is irreducible and non-separable. Prove that
f0(x) = h(xp

m

) for some positive integer m and some irreducible separable polynomial h ∈ F [x].

Outline of solution. One can proceed by strong induction: if deg(f0) = 1 then f0(x) is always
separable so the statement is vacuous. If deg(f0) > 1 then one can use part (c) to write f0(x) =
f1(xp) for some irreducible f1(x). Then one has deg(f0) = p deg(f1) so deg(f1) < deg(f0),
allowing one to apply the induction hypothesis.

4. Suppose F is a field char(F ) = p is prime and φ : F → F , φ(a) = ap is not surjective. The image of
φ is denoted by F p. Prove that F/F p is not separable.

Solution. Choose some element α ∈ F \ F p; this is possible because φ is not surjective by
assumption. Notice that αp = φ(α) ∈ F p, and thus we have xp − αp ∈ F p[x]. Because α is a root of
this polynomial we see that mα,Fp(x)|(xp−αp). Also notice that xp−αp = (x−α)p in F [x] because
we are in characteristic p. Thus by unique factorization we see that mα,Fp(x) = (x−α)k in F [x] for
some 1 ≤ k ≤ p. Notice if k = 1 then we would have x− α = mα,Fp(x) ∈ F p[x], which would imply
α ∈ F p, which contradicts our choice of α. Thus we must have k ≥ 2, and we see that mα,Fp(x) has
at least two copies of x − α in its decomposition into irreducible factors in F [x], which means that
mα,Fp(x) is not a separable polynomial. Thus α ∈ F is an element which is not separable over F p,
so F/F p is not a separable extension.

5. Suppose E/F is an algebraic field extension.
(a) If char(F ) = 0 then E/F is separable.

Outline of solution. By definition one needs to show that if α ∈ E then mα,F (x) is a separable
element of F [x]. This follows directly from Problem 3(b).

(b) If char(F ) = p and φ : F → F , φ(a) = ap is surjective, prove E/F is separable.

Solution. Again one needs to show that if α ∈ E then mα,F (x) ∈ F [x] is separable. By Problem

3(d) one can write mα,F (x) = h(xp
m

) for some non-negative integer m and an irreducible
separable polynomial h ∈ F [x] (remark: the case m = 0 is coming if mα,F (x) is separable,
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and when mα,F (x) is non-separable this is when we are applying Problem 3(d)). If one writes

h(x) =
∑n
i=0 aix

i, then using that φ is surjective one can write ai = bp
m

i for some bi ∈ F . But
then one sees that

mα,F (x) = h(xp
m

) =

n∑
i=0

bp
m

i xp
m

= (

n∑
i=0

bix
i)p

m

.

Unless m = 0 this contradicts the fact that mα,F (x) is irreducible, so we deduce m = 0 and
then mα,F (x) = h(x) is separable.

2. Week 2

1. Suppose F is a field of characteristic zero and it contains an element ζ such that the multiplicative
order of ζ is n. For a ∈ F , n

√
a denotes a zero of xn − a. Let (F×)n := {an | a ∈ F×}. Notice that

(F×)n is a subgroup of F×.
(a) Prove that F [ n

√
a]/F is a Galois extension for every a ∈ F×.

Solution. The field F [ n
√
a] is the splitting field of xn − a over F : the polynomial splits in

F [ n
√
a] with roots n

√
a, ζ n
√
a, . . . , ζn−1 n

√
a (these are all elements of F [ n

√
a] because ζ ∈ F by

hypothesis), and one can see that F [ n
√
a] = F [ n

√
a, ζ n
√
a, . . . , ζn−1 n

√
a]. These n roots of xn − a

are distinct (because ζ has order n), so in particular xn − a is separable. Thus F [ n
√
a] is the

splitting field of a separable polynomial over F .

(b) Prove that fa : AutF (F [ n
√
a])→ 〈ζn〉, fa(σ) := σ( n

√
a)

n
√
a

is an injective group homomorphism.

Solution. First we show it is a homomorphism: we know for some i and some j we have
σ( n
√
a) = ζi n

√
a and τ( n

√
a) = ζj n

√
a. One then has (σ ◦ τ)( n

√
a) = ζi+j n

√
a, and as a result one

has

fa(σ ◦ τ) =
(σ ◦ τ)( n

√
a)

n
√
a

= ζi+j = ζi ζj =
σ( n
√
a)

n
√
a

σ( n
√
a)

n
√
a

= fa(σ)fa(τ).

If one has fa(σ) = 1 then one sees that σ( n
√
a) = n

√
a, but then σ = id.

(c) Use the previous part to deduce that AutF (F [ n
√
a]) is cyclic. Suppose σ0 generates AutF (F [ n

√
a]),

and prove that for α ∈ F [ n
√
a], we have σ0(α) = α if and only if α ∈ F .

Solution. Part (b) tells us that AutF (F [ n
√
a]) is isomorphic to a subgroup of a cyclic group,

hence is cyclic itself. For σ0 as in the statement, one can verify that σ0(α) = α if and only if
σ(α) = α for all σ ∈ AutF (F [ n

√
a]) (for the forward direction one simply writes σ as a power of

σ0). Then recalling that F = Fix(AutF (F [ n
√
a])) (this is a consequence of part (a)), one has

σ0(α) = α ⇐⇒ σ(α) = α for all σ ∈ AutF (F [ n
√
a]) ⇐⇒ α ∈ F.

2. Suppose F is a field of characteristic zero and it contains an element ζ such that the multiplicative
order of ζ is n. For a ∈ F , n

√
a denotes a zero of xn − a.

(a) Suppose AutF (F [ n
√
a]) = 〈σ0〉. Prove that for every positive integer d we have

σd0 = id ⇐⇒ (a(F×)n)d = (F×)n in F×/(F×)n.
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Solution. Using parts (b) and (c) of Problem 1 (where applicable) one has

σd0 = id ⇐⇒ fa(σd0) = σd0 ⇐⇒ fa(σ0)d = 1

⇐⇒
(σ0( n

√
a)

n
√
a

)d
= 1 ⇐⇒ σ0( n

√
a
d
) = n
√
a
d

⇐⇒ n
√
a
d ∈ F (?)⇐⇒ ad ∈ (F×)n

⇐⇒ ad(F×)n = (F×)n ⇐⇒ (a(F×)n)d = (F×)n.

[Remark: the ⇐⇒ labeled with a (?) requires a line or two of justification, but it is not difficult
to verify using the fact that F contains all nth roots of 1.]

(b) Prove that AutF (F [ n
√
a]) ' 〈a(F×)n〉, where 〈a(F×)n〉 is the cyclic subgroup of F×/(F×)n

which is generated by a(F×)n.

Solution. Using part (b) one sees that o(σ0) = o(a(F×)n), and then because AutF (F [ n
√
a]) =

〈σ0〉, one sees that the two groups in question are cyclic of equal order, hence isomorphic.

3. Suppose F is a field of characteristic zero and it contains an element ζ such that the multiplicative
order of ζ is n. For a ∈ F , n

√
a denotes a zero of xn − a. Prove that for a1, a2 ∈ F× we have

F [ n
√
a1] = F [ n

√
a2] if and only if 〈a1(F×)n〉 = 〈a2(F×)n〉.

Solution. First suppose 〈a1(F×)n〉 = 〈a2(F×)n〉. Then we can write a1(F×)n = (a2(F×)n)i for

some i, and as a result one has a1 = ai2b
n for some b ∈ F . As a result one has n

√
a1 = n

√
a2
iζjb for

some j, and in particular n
√
a1 ∈ F [ n

√
a2] so F [ n

√
a1] ⊆ F [ n

√
a2]. The reverse inclusion is completely

symmetric.

Now suppose F [ n
√
a1] = F [ n

√
a2]. Consider the function fa1 and fa2 as in Problem 1(b). Because

these are injective homomorphisms one has

| Im(fa1)| = |AutF (F [ n
√
a1])| = |AutF (F [ n

√
a2])| = | Im(fa2)|.

Thus these two images are subgroups of 〈ζ〉 of equal size, hence are equal. If we let σ0 denote
a generator of the automorphism group, one sees that fa2(σ0) generates Im(fa2), so as a result
one can write fa1(σ0) = (fa2(σ0))i for some i. Using the definition of fa and rewriting, one has

σ0( n
√
a1/ n
√
a2
i) = n

√
a1/ n
√
a2
i, and then applying Problem 1(c) one sees that n

√
a1/ n
√
a2
i ∈ F . Calling

this element b one has n
√
a1 = n

√
a2
ib and then a1 = ai2b

n. In terms of cosets then we see that
a1(F×)n = (a2(F×)n)i, so 〈a1(F×)n〉 ⊆ 〈a2(F×)n〉. The reverse inclusion is symmetric.

4. Suppose F is a field and p is a prime with the following property: if E/F is a finite field extension
and E 6= F , then p divides [E : F ].
(a) Prove that if E/F is a finite Galois extension, then [E : F ] = pn for some n.

Solution. Let P be a p-Sylow subgroup of AutF (E). Then by the fundamental theorem of Galois
theory, Fix(P ) is an intermediate subfield of E/F with [Fix(P ) : F ] = [AutF (E) : P ], which is
coprime to p by definition of Sylow subgroup. But by our original hypothesis, if p - [Fix(P ) : F ]
then Fix(P ) = F . As a result of the fundamental theorem one then has P = AutF (E), and in
particular [E : F ] = |AutF (E)| is a power of p.

(b) Prove that if E/F is a finite separable extension, then [E : F ] = pn for some integer n.

Solution. Let L be a normal closure of E/F . Because E/F is separable, L/F is Galois. Thus
part (a) tells us that [L : F ] is a power of p, and then by tower law one has [E : F ] divides
[L : F ], hence [E : F ] is a power of p.

(c) Suppose there is a finite non-separable extension of F . Prove that char(F ) = p.
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Solution. Let ` := char(F ). If there exists a finite non-separable extension of F , then Problem
5(b) of Homework 1 tells us that φ : F → F , φ(a) = a` cannot be surjective. If we take some
t ∈ F \ F ` then we let E be a splitting field of x` − t over F and α ∈ E a root of x` − t. One
necessarily has mα,F (x)|x` − t, and x` − t = (x − α)` in E[x] so one has mα,F (x) = (x − α)k

for some 2 ≤ k ≤ ` (notice one cannot have k = 1 because this would imply that α ∈ F ,
contradicting the fact that t /∈ F `). By examining the constant term one sees that αk ∈ F . If
we rephrase this as the statement (αF×)k = F× in the group E×/F×, we can use group theory:
one has α` = t ∈ F , so (αF×)` = F×, and thus the order of αF× divides `. But ` is prime and
α /∈ F×, so this order is exactly `. Now from the statement (αF×)k = F× one sees that the
order ` must divide k. But k ≤ ` so we find k = `, and thus mα,F (x) = (x− α)` = x` − t, and
in particular x` − t is irreducible in F [x]. As a result we see that E/F is a finite extension of
degree `, and then by the original hypothesis one has p|`, so because these are primes we find
p = ` = char(F ).

3. Week 3

1. (a) Suppose E/F is a field extension and K ∈ Int(E/F ). Prove that E/F is purely inseparable if
and only if E/K and K/F are purely inseparable.

Solution. The statement is trivial in characteristic 0, so suppose char(F ) = p > 0. Then E/F

is purely inseparable if and only if for every α ∈ E there exists some k ≥ 0 such that αp
k ∈ F .

First suppose E/F is purely inseparable. If α ∈ K, then α ∈ E so there exists k ≥ 0 such that

αp
k ∈ F , which shows K/F is purely inseparable. In addition if α ∈ E, then taking k ≥ 0 so

that αp
k ∈ F , we also have αp

k ∈ K, so E/K is purely inseparable.

Conversely suppose E/K and K/F are purely inseparable. If α ∈ E then because E/K is purely

inseparable we can find k ≥ 0 with αp
k ∈ K. Then because K/F is purely inseparable we can

find ` ≥ 0 such that (αp
k

)p
` ∈ F . Thus αp

k+` ∈ F and we see that E/F is purely inseparable.

(b) Suppose E/F is a finite purely inseparable extension. Prove that [E : F ] = pm for some integer
m where p = char(F ).

Outline of solution. First consider the case that the extension is simple, say E = F [α]. From our

equivalent conditions for an extension to be purely inseparable, we know that mα,F (x) = xp
k−a

for some k ≥ 0 and a ∈ F . As a result one has

[E : F ] = [F [α] : F ] = deg(mα,F ) = pk,

which gives the result in this special case.

For the general case, write E = F [α1, . . . , αn] and consider the tower

F ⊆ F [α1] ⊆ F [α1, α2] ⊆ · · · ⊆ F [α1, . . . , αn−1] ⊆ F [α1, . . . , αn] = E.

At each step of the tower apply the simple case to find [F [α1, . . . , αi+1] : F [α1, . . . , αi]] is a
power of p (we use part (a) to see that this extension is still purely inseparable). Applying the
tower law to the tower one sees [E : F ] is a power of p as well.

(c) Suppose F is a field and p is a prime with the following property: if E/F is a finite field
extension and E 6= F , then p divides [E : F ]. Prove that [E : F ] = pn for some n.

Solution. If E/F is separable then this is exactly Homework 2 Problem 4(b). If E/F is non-
separable we can apply part (c) to find char(F ) = p. In this case consider the separable closure
Esep of F in E. We know that E/Esep is a purely inseparable extension and Esep/F is a
separable extension. From Homework 2 Problem 4(b) we have that [Esep : F ] is a power of p,
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and from part (b) above we have that [E : Esep] is a power of p. Using tower law we conclude
the result.

2. Suppose F is a field of characteristic p > 2. Let F (t) :=
{ f(t)
g(t) | f, g ∈ F [t]

}
be the field of ratioanl

functions. Suppose σ, τ ∈ AutF (F (t)) are such that σ(t) := t + 1 and τ(t) = −t. Let H be the
subgroup generated by σ and τ .
(a) Prove that Fix(τ) = F (t2) and Fix(σ) = F (tp − t).

Solution. Recall we have seen in problem session that if u = f(t)
g(t) with f, g ∈ F [t] and gcd(f, g) =

1, one has that F (t)/F (u) is a finite extension with [F (t) : F (u)] = max{deg(f),deg(g)}.

Clearly one has Fix(τ) ⊆ F (t2). Writing Fix(τ) = Fix(〈τ〉) and using Theorem 26.1.3 one has

[F (t) : Fix(τ)] = [F (t) : Fix(〈τ〉)] = |AutFix(〈τ〉)(F (t))| = |〈τ〉| = 2.

Using the fact stated above (or via more elementary methods), one also has [F (t) : F (t2)] = 2.
Now we can consider the tower applied to Fix(τ) ⊆ F (t2) ⊆ F (t), and get

2 = [F (t) : Fix(τ)] = [F (t) : F (t2)][F (t2) : Fix(τ)] = 2[F (t2) : Fix(τ)],

and cancelling we find [F (t2) : Fix(τ)] = 1, so F (t2) = Fix(τ).

For the other equality we apply similar techniques: one can easily verify F (tp − t) ⊆ Fix(σ),
then use a similar chain of equalities to find [F (t) : Fix(σ)] = o(σ) = p. Then apply our fact
above to find [F (t) : F (tp − t)] = p, and conclude F (tp − t) = Fix(σ) using tower law.

(b) Prove that Fix(H) = F ((tp − t)2).

Outline of solution. One has inclusions F ((tp − t)2) ⊆ Fix(H) ⊆ Fix(τ) ∩ Fix(σ) = F (t2) ∩
F (tp − t). We can use the same fact as before to see that [F (t) : F ((tp − t)2)] = 2p, so by the
same methods used in (a) it suffices to see that [F (t) : F (t2) ∩ F (tp − t)] = 2p. In fact, the
inclusions above (along with tower law) gives us [F (t) : F (t2)∩F (tp − t)] ≤ 2p, so we just need
to see the reverse inequality. But considering the diagram of extensions

F (t)

F (t2) F (tp − t)

F (t2) ∩ F (tp − t)

p2

one sees with tower law that 2 and p both divide [F (t) : F ((tp− t)2], and because p is odd then
we see that 2p divides this quantity as well, giving the desired inequality.

(c) Prove that F (t2)/F ((tp − t)2) is not a normal extension.

Solution. Because F ((tp− t)2) = Fix(H) we can apply Theorem 26.1.3 to find F (t)/F ((tp− t)2)
is Galois with AutF ((tp−t)2)(F (t)) = H. Because F (t2) = Fix(τ) = Fix(〈τ〉), we have by the

fundamental theorem of Galois theory that F (t2)/F ((tp − t)2) is normal if and only if 〈τ〉 is
a normal subgroup of H. But one can directly verify that στσ−1 /∈ 〈τ〉, so we conclude this
extension is not normal.

3. Suppose E/F is a finite Galois extension and f ∈ F [x] \ F is a separable polynomial. Suppose L is
a splitting field of f over E. Prove that L/F is a Galois extension.

Solution. Theorem 29.1.4 says that L/F is a normal extension, so it suffices to prove separability.
Notice f is also a separable polynomial of E[x], because any irreducible factor as an element of E[x]
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divides an irreducible factor from F [x], and we know each of these has distinct roots in a splitting
field. Thus L/E is separable as it is the splitting field of a separable polynomial over E. We have
by hypothesis that E/F is separable, and then L/E and E/F both separable implies L/F separable
as well.

Alternatively, if E is a splitting field of a separable polynomial g ∈ F [x] \F over F , then one can
directly prove that L is the splitting field of f(x)g(x) over F , and f(x)g(x) is a separable polynomial
because both f(x) and g(x) are.

4. Suppose p is prime, σ = (0, 1, . . . , p − 1) in the symmetric group Sp of the set {0, 1, . . . , p − 1} and
τ = (0, a) ∈ Sp for some integer a ∈ [1, p− 1]. Let Ha be the group generated by σ and τ .
(a) Prove that H1 = Sp.

Solution. Recall every element of Sp can be written as a product of transpositions, so it suffices
to show that any transposition (i, j) is in H1. Let γ := τσ = (0, 1)(0, 1, . . . , p−1) = (1, . . . , p−1),
which is in H1 because τ and σ are. Then for each i ∈ [1, p−2] one has (i, i+1) = γi◦τ◦γ−i ∈ H1.
From this we see that (1, 2)(0, 1)(1, 2)−1 = (0, 2) is in H1. Then (2, 3)(0, 2)(2, 3)−1 = (0, 3) is
also in H1, and inductively we find that (i − 1, i)(0, i − 1)(i − 1, i) = (0, i) is in H1 for each
i ∈ [1, p− 1] Finally for any i, j we deduce that (i, j) = (0, i)(0, j) is inside H1 as well. Thus we
have shown all transpositions are in H1 and we are done.

(b) Prove that Ha = Sp.

Solution. Notice for any integer i that σi(0, a)σ−i = (a, a + i) is an element of Ha, where we
consider addition modulo p. Applying this fact for i = ka, this says that (ka, (k+ 1)a) is inside
Ha for any integer k. Notice then (0, 2a) = (a, 2a)(0, a)(a, 2a)−1 is inside Ha, and continuing
inductively we find that (0, ka) = ((k− 1)a, ka)(0, (k− 1)a)((k− 1)a, ka)−1 is inside Ha for any
k. In particular because a ∈ [1, p− 1] we can choose some k for which ka = 1 in Zp, and then
this says that (0, 1) ∈ Ha. But then using part (a) we have inclusions

Sp = H1 = 〈σ, (0, 1)〉 ⊆ Ha ⊆ Sp,

and then we deduce all the above groups are equal, so in particular Ha = Sp.

5. Suppose p > 4 is prime, and f ∈ Q[x] is an irreducible polynomial of degree p which has two non-real
complex zeros and p− 2 real zeros. Let E ⊆ C be a splitting field of f over Q.
(a) Prove that AutQ(E) ' Sp.

See Theorem 30.3.3 in the notes.

(b) Prove that f is not solvable by radicals over Q.

See Theorem 30.3.3 in the notes.

4. Week 4

1. Suppose L/F is an algebraic extension. Let

Fab := {α ∈ L | F [α]/F is Galois, and AutF (F [α]) is abelian}.

Prove that Fab/F is a Galois extension. Moreover prove that AutF (Fab) is abelian if L/F is a finite
extension.

Outline of solution. Suppose α, β ∈ Fab. Because F [α]/F is Galois there is some separable
polynomial f ∈ F [x] \ F such that F [α] is a splitting field of f over F , and similarly there is some
separable g ∈ F [x]\F such that F [β] is a splitting field of g over F . One can verify then that F [α, β]
is a splitting field of the (separable) polynomial f(x)g(x) over F , so F [α, β]/F is Galois. Next, we
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see that we have a homomorphism

AutF (F [α, β])→ AutF (F [α])×AutF (F [β]), σ 7→ (σ|F [α], σ|F [β]),

where we note these restrictions are well-defined because F [α] and F [β are both normal over F . It is
easy to see this homomorphism is also injective, and thus the fact that AutF (F [α]) and AutF (F [β])
are both abelian implies AutF (F [α, β]) is abelian as well. In particular, by the fundamental theorem
of Galois theory this implies that F [α− β] is Galois over F , because the corresponding subgroup of
AutF (F [α, β]) is automatically normal. Furthermore, one has a surjective map (see Theorem 23.1.1)

AutF (F [α, β])→ AutF (F [α− β]), σ 7→ σ|F [α−β]

and thus the fact that AutF (F [α, β]) is abelian implies the same for AutF (F [α − β]) and then we
see that α−β ∈ Fab. Similarly one has αβ and (when β 6= 0) α/β are both in Fab/F as well, so Fab

is a field.

If α ∈ Fab then F [α]/F being Galois in particular means α is separable over F , so Fab is separable.
Furthermore, one has that mα,F splits into linear factors in F [α], and hence the same is true inside
Fab, so Fab/F is normal as well. This completes the proof that Fab/F is a Galois extension.

For the final part of the proof, if L/F is finite then Fab/F is finite as well, and because it
is separable (what we have just shown above) the Primitive Element Theorem (Theorem 27.2.2)
implies that Fab = F [α] for some α ∈ Fab; but then by definition of Fab we have that AutF (Fab) =
AutF (F [α]) is abelian.

2. Suppose E/F is a finite normal extension, and

Esep := {α ∈ E | mα,F is separable}.

(a) Prove that Esep/F is a Galois extension.

Solution. We have seen in class that Esep is a field and Esep/F is a separable extension by
definition, so we need to show normality. Suppose α ∈ Esep. We want to see that mα,F splits
into linear factors in Esep. Because E/F is normal we have can split mα,F into linear factors
in E, say mα,F (x) =

∏
i(x − βi). Then notice that for each i one has mβi,F = mα,F , so βi is

separable over F because α is. But this means βi ∈ Esep so this gives the conclusion we wanted.

(b) Prove that r : AutF (E)→ AutF (Esep), r(θ) := θ|Esep
is a group isomorphism.

Solution. The statement is trivial in characteristic 0 so suppose char(F ) = p > 0. Surjectivity of
r follows from the fact that E/F is normal, see for instance Proposition 23.1.1. For injectivity,

suppose r(θ) = id, so θ(β) = β for all β ∈ Esep. Then if α ∈ Esep one has αp
k ∈ Esep for some

k ≥ 0 because E/Esep is purely inseparable. But then one has θ(αp
k

) = αp
k

, and from this one

subtracts and finds that (θ(α)− α)p
k

= 0, which implies θ(α) = α. Thus θ = id and this shows
r is injective.

(c) Let K := Fix(AutF (E)). Prove that [E : K] = [Esep : F ], E/K is Galois, and K/F is purely
inseparable.

Solution. Theorem 26.1.3 immediately implies E/K is Galois with AutK(E) = AutF (E). Thus
we can calculate

[E : K] = |AutK(E)| = |AutF (E)| = |AutF (Esep)| = [Esep : F ].

To see K/F is purely inseparable we again suppose we are in characteristic p (the characteristic

0 case being trivial) and suppose α ∈ K. Because α ∈ E we can find k ≥ 0 such that αp
k ∈ Esep.

We will show αp
k ∈ F by showing it is fixed by every θ ∈ AutF (Esep); for any such θ we know
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by part (b) that θ = θ̃|Esep
for some θ̃ ∈ AutF (E). Then because α ∈ K = Fix(AutF (E)) we

have

θ(αp
k

) = θ̃(αp
k

) = θ̃(α)p
k

= αp
k

.

We conclude αp
k ∈ F and because α ∈ K was arbitrary we conclude the result.

3. For a finite extension E/F , we let [E : F ]s := [Esep : F ]. Suppose K ∈ Int(E/F ).

Let Esep,K be the separable closure of K in E/K, let Esep,F be the separable closure of F in E/F ,
and let Ksep,F be the separable closure of F in K/F .
(a) In the above setting prove that Ksep,F ⊆ Esep,F ⊆ Esep,K .

Solution. If α ∈ Ksep,F then α ∈ K and mα,F is separable in F [x]. Because K ⊆ E it is
immediate that α ∈ Esep,F as well. Now if α ∈ Esep,F then α ∈ E with mα,F separable. One
has mα,K |mα,F in K[x] so mα,K is separable as well, and thus α ∈ Esep,K . This shows the
desired inclusions.

(b) Argue that there is α ∈ Esep,F such that Esep,F = Ksep,F [α].

Solution. We have that Esep,F /F is separable by construction. Because F ⊆ Ksep,F ⊆ Esep,F ,
and the fact that separability satisfies a block-tower phenomena (Theorem 28.2.1) one finds
that Esep,F /Ksep,F is separable, and it is finite because E/F is finite by hypothesis. Thus it
follows from the Primitive Element Theorem (Theorem 27.2.2) that Esep,F = Ksep,F [α] for some
α ∈ Esep,F .

(c) Prove that Esep,K/K[α] is both separable and purely inseparable. Deduce that Esep,K = K[α].

Solution. By construction Esep,K/K is separable, and then Esep,K/K[α] is also separable. On
the other hand, recall that E/Esep,F is purely inseparable. But we have inclusions

Esep,F = Ksep,F [α] ⊆ K[α] ⊆ Esep,K ⊆ E,

and because we have proved in the previous homework that purely inseparable extensions satisfy
a block-tower phenomena we deduce that Esep,K/K[α] is purely inseparable. The only exten-
sions which are both separable and purely inseparable are trivial extensions, so Esep,K = K[α].

(d) Prove that mα,K |mα,Ksep,F
and mα,Ksep,F

|mq
α,K where q is either 1 if char(F ) = 0 or a power

of p if char(F ) = p > 0. Deduce that mα,K = mα,Ksep,F
.

Solution. The statement is trivial if char(F ) = 0 so suppose char(F ) = p > 0. The fact that
mα,K |mα,Ksep,F

is immediate from Ksep,F ⊆ K. On the other hand let’s write mα,F (x) =

c0 + · · ·+ cn−1x
n−1 +xn with ci ∈ K. Because K/Ksep,F is purely inseparable for each i we can

find some m ≥ 0 such that cp
mi

i ∈ Ksep,F . If we take m = lcm(mi) and q = pm then cqi ∈ Ksep,F

for each i. As a result we have mq
α,K ∈ Ksep,F [x], and this polynomial has α as a root so we

deduce that mα,Ksep,F
|mq

α,K .

For the second claim notice that mα,Ksep,F
and mα,K are both separable, and by the facts proved

above the two polynomials have exactly the same roots (take in some splitting field). Thus one
concludes that mα,K = mα,Ksep,F

.

(e) Prove that [E : F ]s = [E : K]s[K : F ]s.

Solution. Using part (b) we calculate

[E : F ]s = [Esep,F : F ] = [Ksep,F [α] : F ] = [Ksep,F [α] : Ksep,F ][Ksep,F : F ].

Now we use parts (c) and (d) to calculate

[Ksep,F [α] : Ksep,F ] = deg(mα,Ksep,F
) = deg(mα,K) = [K[α] : K] = [Esep,K : K] = [E : K]s.
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Because [Ksep,F : F ] = [K : F ]s, returning to the first line we get the result.

4. Suppose F is a field, L := F (x1, . . . , xn) is the field of fractions of F [x1, . . . , xn]. For σ ∈ Sn and
f ∈ L, let Tσ(f) = f(xσ−1(1), . . . , xσ−1(n)).
(a) Prove that T : Sn → AutF (L), (T (σ))(f) := Tσ(f) is an injective group homomorphism.

Solution. One needs to show that Tσ◦τ = Tσ ◦ Tτ for σ, τ ∈ Sn. We calculate for f ∈ L

Tσ(Tτ (f)) = Tτ (f)(xσ−1(1), . . . , xσ−1(n)) = f(xτ−1(σ−1(1)), . . . , xτ−1(σ−1(n)))

= f(x(σ◦τ)−1(1), . . . , x(σ◦τ)−1(n)) = Tσ◦τ (f).

This shows T is a homomorphism. To see it is injective, suppose T (σ) = id, i.e. Tσ(f) = f for
all f . Taking f = xi this says that xσ−1(i) = xi, so σ−1(i) = i for each i which implies σ = id.

(b) Let K = Fix(T (Sn)). Elements of K are called symmetric functions. Let

(t− x1) · · · (t− xn) = tn − s1tn−1 + s2t
n−2 − · · ·+ (−1)nsn.

Let E := F (s1, . . . , sn). Prove that L is a splitting field of tn − s1tn−1 + · · ·+ (−1)nsn over E.
Deduce that [L : E] ≤ n!.

Solution. Notice that the xi are algebraic over E by construction, and by construction the
polynomial in question splits in L. The former, in particular, implies that E(x1, . . . , xn) =
E[x1, . . . , xn], and we find that

L = F (x1, . . . , xn) ⊆ E(x1, . . . , xn) ⊆ E[x1, . . . , xn] ⊆ L.

Thus one has equality all across the above inclusions, so in particular L = E[x1, . . . , xn] and so
L is the splitting field of tn − s1tn−1 + · · ·+ (−1)nsn over E. The second claim follows the fact
L is the splitting field of a degree n polynomial over E.

(c) Prove that K = E.

Solution. The inclusion E ⊆ K is clear. But because K = Fix(T (Sn)) we know that L/K is
Galois with AutK(L) = T (Sn), and in particular [L : K] = |T (Sn)| = |Sn| = n!. Using tower
law we see that [L : E] = [L : K][K : E] = n![K : E], and then the fact that [L : E] ≤ n! by
part (b) implies [K : E] = 1, so K = E.

(d) For f ∈ L, let G(f) := {σ ∈ Sn | Tσ(f) = f}. Prove that Fix(T (G(f))) = K[f ].

Solution. We calculate

T (G(f)) = {Tσ | σ ∈ G(f)} = {Tσ | Tσ(f) = f}
= {θ ∈ T (Sn) | θ(f) = f} = {θ ∈ AutK(L) | θ(f) = f}
= AutK[f ](L).

Now the result follows from the fundamental theorem of Galois theory.

(e) Prove that G(f) ⊆ G(g) for f, g ∈ L if and only if there is θ ∈ K[t] such that g = θ(f).

Solution. By fundamental theorem of Galois theory and part (d) one has

G(f) ⊆ G(g) ⇐⇒ Fix(T (G(g))) ⊆ Fix(T (G(f)))

⇐⇒ K[g] ⊆ K[f ]

⇐⇒ g ∈ K[f ] ⇐⇒ there exists θ ∈ K[t] such that g = θ(f).

5. Week 5

1. Suppose L/E is a field extension and L is algebraically closed. Suppose E is the algbebraic closure
of F in L. Prove that E is algebraically closed.
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Solution. Suppose f ∈ E[x] \ E. Then f ∈ L[x] \ L so because L is algebraically closed there
is some zero α ∈ L of f . We claim that α ∈ E: we have that α is algebraic over E, so E[α]/E is
algebraic, and also E/F is algebraic, so E[α]/F is also algebraic and thus the element α is algebraic
over F , but then by definition of E this means that α ∈ E.

2. Suppose E/F is an algebraic extension and every f ∈ F [x]\F can be decomposed into linear factors
in E[x]. Prove that E is algebraically closed.

Solution. Suppose L/E is an algebraic extension; we will show that L = E. Because L/E and E/F
are both algebraic, L/F is also algebraic. Thus if α ∈ L then it is algebraic over F so mα,F ∈ F [x]
exists and by assumption decomposes into linear factors in E[x]. Because α is a zero of mα,F this
implies α ∈ E, proving L = E.

3. Suppose F is a perfect field, and F is an algebraic closure of F . Let

Intf,n(F/F ) = {E ∈ Int(F/F ) | E/F is a finite normal extension}.

(a) For E ∈ Intf,n(F/F ), let rE : AutF (F )→ AutF (E) be the restriction map rE(φ) := φ|E . Argue
why rE is a well-defined surjective group homomorphism.

Solution. The map rE is well-defined because E/F is normal, so φ(E) = E for any φ ∈ AutF (F ).
Surjectivity is Lemma 33.4.1.

(b) Suppose E,E′ ∈ Intf,n(F/F ) and E ⊆ E′. Let rE′,E : AutF (E′)→ AutF (E) be the restriction
map rE′,E(φ) := φ|E . Argue that rE′,E is a well-defined surjective group homomorphism and
rE = rE′,E ◦ rE′ .

Solution. Again well-definedness is because E/F is normal, so the restriction in fact is an
automorphism of E (which is still F -linear). Surjectivity comes from E′/F being normal, for
instance Proposition 23.1.1.

(c) Let G(F/F ) := {(φE) ∈
∏
E∈Intf,n(F/F ) AutF (E) | ∀E ⊆ E′, rE′,E(φE′) = φE}. Consider

r : AutF (F )→ G(F/F ), r(φ) := (rE(φ))E∈Intf,n(F/F ).

Prove that r is a well-defined isomorphism.

Solution. To check well-definedness, we just need to see that r(φ) ∈ G(F/F ), i.e. one needs
to check that for E ⊆ E′ one has rE′,E(rE′(φ)) = rE(φ). This is really just the equality
(φ|E′)|E = φ|E , which is clear.

To show injectivity, suppose r(φ) = idG(F/F ) = (idE)E∈Intf,n(F/F ). This says that rE(φ) = idE

for all E ∈ Intf,n(F/F ). Then for any α ∈ E one can choose any E ∈ Intf,n(F/F ) containing

α (for instance take the normal closure of F [α]/F in F ), and then one has φ(α) = φ|E(α) =
rE(α) = idE(α) = α. Because α was arbitrary this shows φ is the identity on F .

For surjectivity, suppose (φE)E∈Intf,n(F/F ) ∈ G(F/F ). Then define φ : F → F as follows: if

α ∈ E, choose any E ∈ Intf,n(F/F ) containing α and define φ(α) := φE(α). One needs to

check this does not depend on our choice of E: if both E,E′ ∈ Intf,n(F/F ) contain α, then

consider the compositum E′′ of E and E′ in F . We have seen that E′′/F is finite normal
because the same is true for both E and E′, and one has E ⊆ E′′ and E′ ⊆ E′′. Using the
compatibility of the φE we find φE(α) = (rE′′,E(φE′′))(α) = φE′′ |E(α) = φE′′(α). Similarly
one has φE′(α) = φE′′(α), and thus φE(α) = φE′(α). We see that φ(α) does not depend on the
choice of E, so φ is well-defined, and one can readily verify that φ is an F -automorphism of F
satisfying r(φ) = (φE)E∈Intf,n(F/F ).
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4. Suppose Fp is an algebraic closure of Fp.
(a) Prove that for every positive integer n there is a unique Fn ∈ Intf,n(Fp/Fp) that is isomorphic

to Fpn .

Solution. Recall Fpn is a splitting field of xp
n − x over Fp. Thus if one lets α1, . . . , αpn denote

the zeros of xp
n − x in Fp then Fp[α1, . . . , αpn ] is the unique subfield of Fp which is a splitting

field of xp
n − x over Fp, and thus the unique subfield of Fp which is isomorphic to Fpn .

(b) Prove that Intf,n(Fp/Fp) = {Fn | n ∈ Z+} and Fp =
⋃∞
n=1 Fn.

Solution. If E ∈ Intf,n(Fp/Fp) then E/Fp is finite, so in particular E is a finite field of char-
acteristic p and thus E ' Fpn for some n, but then from part (a) we see that E = Fn. This

shows the first equality. For the second equality one inclusion is clear, and conversely if α ∈ Fp
then Fp[α] is a finite field contained in Fp, so by the same reasoning above Fp[α] = Fn for some
n ∈ Z+, in particular α ∈ Fn.

(c) Let Ẑ := {(an) ∈
∏∞
n=2 Zn | ∀n|n′, an′ ≡ an (mod n)}. Prove AutFp(Fp) = Ẑ.

Outline of solution. One can invoke Problem 3(c) here: we know by 4(a) that Intf,n(Fp/Fp) =
{Fn | n ∈ Z+}, one has AutF (Fn) ' Zn and also Fn ⊆ Fn′ ⇐⇒ n|n′. Thus one just needs
to know that the compatibility condition rFn′ ,Fn(φFn′ ) = φFn corresponds to a′n ≡ an (mod n)
whenever φFk corresponds to ak under AutFp(Fk) ' Zk for k = n, n′. This can be summarized
as the commutativity of the following square (which is straightward to check):

AutFp(Fn′) AutFp(Fn)

Zn′ Zn

rF
n′ ,Fn

' '

(d) Prove Ẑ does not have a torsion element.

Solution. Suppose (an)n≥2 is a torsion element of Ẑ. This means there is some k ∈ Z+ such
that k·(an)n≥2 = 0, i.e. n divides kan for each n. For a given n, one in particular has kn|kank,

but one can verify this implies n|ank. Because ank ≡ an (mod n) by the definition of Ẑ we
conclude n|an, i.e. an = 0 in Zn. This proves (an)n≥2 = 0.

(e) Prove that if Fp/E is a finite extension, then E = Fp.

Solution. Because Fp/Fp is Galois (recall we have seen Fp is perfect) we have that Fp/E is Galois,

so in particular [Fp : E] = |AutE(Fp)|. Now AutE(Fp) is a finite subgroup of AutFp(Fp) ' Ẑ,

and so any non-identity element of AutE(Fp) is torsion, but we have seen that Ẑ has no (non-

identity) torsion elements, so we must deduce AutE(Fp) = {id}, and hence [Fp : E] = 1, i.e.

E = Fp.

6. Week 6

1. Prove that Q[cos( 2π
n )]/Q is a Galois extension and AutQ(Q[cos( 2π

n )]) ' Z×n /± 1.

Solution. Recall ζn = e2πi/n = cos( 2π
n ) + i sin( 2π

n ); thus cos( 2π
n ) = 1

2 (ζn + ζ−1n ). In particular we

have Q[cos( 2π
n )] ⊆ Q[ζn]. Because Q[ζn]/Q is an Galois extension with abelian automorphism group,

we deduce that Q[cos( 2π
n )]/Q is Galois as well.
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Recall that AutQ(Q[ζn]) ' Z×n via σ 7→ [i]n where σ(ζn) = ζin. If we denote this isomorphism by
ϕ then one has {±1} = ϕ({1, τ}) where τ is the restriction of complex conjugation to Q[ζn]. If we
can show that AutQ[cos( 2π

n )](Q[ζn]) = {1, τ} then this means ϕ induces an isomorphism

AutQ(Q[cos(
2π

n
)]) ' AutQ(Q[ζn])/AutQ[cos( 2π

n )](Q[ζn]) ' Z×n /{±1},

which is the result we want. To show the equality, notice the inclusion {1, τ} ⊆ AutQ[cos( 2π
n )](Q[ζn])

is clear. On the other hand, notice that ζn is a root of x2 − 2 cos( 2π
n )x + 1 ∈ Q[cos( 2π

n )][x], which

shows that [Q[ζn] : Q[cos( 2π
n )]] ≤ 2 from which we deduce equality holds.

2. Suppose E/F is a field extension, and f ∈ F [x] is a polynomial of degree n with distinct zeros
α1, . . . , αn in E. Suppose [F [α1, α2] : F ] = n(n− 1).
(a) Find the degrees of irreducible factors of f in F [x] and (F [α1])[x].

Solution. Notice because mα1,F |f one has [F [α1] : F ] ≤ deg(f) = n. In (F [α1])[x] one has a
factorization f(x) = (x− α1)g(x), and then because α1 6= α2 one has mα2,F [α1]|g in (F [α1])[x].
As a result [F [α1, α2] : F [α1]] ≤ deg(g) = n− 1. But we know that [F [α1, α2] : F ] = n(n− 1).
So if, for instance, [F [α1] : F ] < n we would deduce that

n(n− 1) = [F [α1, α2] : F ] = [F [α1, α2] : F [α1]][F [α1] : F ] < n(n− 1),

giving a contradiction. We deduce [F [α1] : F ] = n and similarly [F [α1, α2] : F [α1]] = n − 1.
As a result one sees that deg(mα1,F ) = n so mα1,F = f , and similarly mα2,F [α1] = g. We
deduce that f is irreducible in F [x] and has two irreducible factors (given by x− α1 and g(x))
in (F [α1])[x].

(b) Prove that Gf,F acts two-transitively on {α1, . . . , αn}.

Outline of solution. Fix some i 6= j. Because f is irreducible in F [x], one can find, using
Lemma 16.2.2, an F -isomorphism θ : F [α1] → F [αi] sending α1 7→ αi. Now we know from (a)
we have f(x) = (x− α1)g(x) in (F [α1])[x] with g(x) irreducible; one sees that α2 is a root of g
while αj is a root of θ(g), so using Lemma 16.2.2 again one can extend this isomorphism to an
isomorphism F [α1][α2]→ F [αi][αj ] sending α2 7→ αj . From here one just needs to extend this
isomorphism to the splitting field to get the desired element of Gf,F .

(c) Let g(x) := mα1+α2,F (x). Prove that g(αi + αj) = 0 for every i 6= j.

Solution. For any i 6= j, by (b) we can find θ ∈ Gf,F such that θ(α1) = αi and θ(α2) = αj .
Thus one has

0 = θ(0) = θ(g(α1 + α2)) = θ(g)(θ(α1 + α2)) = g(αi + αj),

which gives the result.

3. Suppose K0 := Q ⊆ K1 ⊆ · · · ⊆ Kn ⊆ C is a tower of fields such that Ki+1/Ki is a Galois extension
and [Ki+1 : Ki] = pi where pi is an odd prime for all i.
(a) Prove that Ki ⊆ R for all i.

Solution. Suppose some Ki is not contained in R; let i be the largest i such that Ki ⊆ R, so
Ki+1 6⊆ R. Let τ ∈ Aut(C) denote complex conjugation. Because Ki+1/Ki is Galois and τ fixes
all elements of Ki, one has that τ |Ki+1

is an element of AutKi(Ki+1). But because Ki+1 6⊆ R this
element is nontrivial, hence has order 2. This is impossible because |AutKi(Ki+1)| = [Ki+1 : Ki]
is odd and we have a contradiction.

(b) Prove that Q[ 3
√

2] is not contained in Kn.

Suppose for a contradiction 3
√

2 ∈ Kn; let i be maximal such that 3
√

2 /∈ Ki, so 3
√

2 ∈ Ki+1.
Notice that m 3√2,Ki

(x)|x3−2; from the tower Ki ⊆ Ki[
3
√

2] ⊆ Ki+1 and the fact that [Ki+1 : Ki]
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is an odd prime, we deduce that deg(m 3√2,Ki
) = [Ki[

3
√

2] : Ki] = 3. But because Ki+1/Ki is

Galois, m 3√2(x) = x3 − 2 should then split in Ki+1, and this is impossible because two roots

of x3 − 2 are not real and by (a) we should have Ki+1 ⊆ R. We have a contradiction and so
3
√

2 /∈ Kn.

4. Suppose F is a field and F is an algebraic closure of F . Suppose K,E ∈ Int(F/F ) such that K/E
is a Galois extension and [K : E] = p where p is prime. Suppose E/F is a Galois extension and
|AutF (E)| = pm for some integer m.
(a) Argue why there is α ∈ K such that K = E[α]. Let L ∈ Int(F/E). Prove that L[α]/L is a

Galois extension and [L[α] : L] = 1 or p.

Solution. The first claim is from primitive element theorem, which applies because K/E is
finite Galois (one can also argue more directly by taking any α ∈ K \E and using the fact that
[K : E] is prime). For the second claim, one can verify that K is the splitting field of mα,E

over E, and then one can also verify that L[α] is a splitting field of mα,E over L. Because mα,E

is separable in E[x] (because K/E is Galois), one has that it is separable in L[x] as well, so
L[α]/L is Galois.

For the final claim suppose [L[α] : L] 6= 1. Then α /∈ L and one can conclude from this, by
considering the tower E ⊆ L∩K ⊆ K, that L∩K = E. Then notice one has a natural restriction
homomorphism AutL(L[α]) → AutL∩K(K) = AutE(K), which is well-defined because K/E is
Galois. One can easily check this is a bijection (surjectivity is because L[α]/L is Galois), and
then looking at the size of each group one deduces [L[α] : L] = [E : K] = p. This proves
[L[α] : L] = 1 or p.

(b) Argue why for every θi ∈ AutF (E), there is θ̂i ∈ AutF (F ) such that θ̂i|E = θi. Let αi := θ̂i(α).
Prove that E[αi]/E is a Galois extension and [E[αi] : E] = p for all i.

Solution. We know because E[α]/E is Galois that E[α] is a splitting field of mα,E over E.

From this one can verify that E[αi]/E is a splitting field of θ̂i(mα,E) over E: for instance if one
writes mα,E(x) = (x − β1) · · · (x − βm), then βj ∈ E[α] for each i, and then θi(mα,E) = (x −
θ̂i(β1)) · · · (x− θ̂i(βm)), and one can directly verify that βj ∈ E[α] implies that θ̂i(βj) ∈ E[αi].
The degree formula follows because θi(mα,E) is irreducible, which implies θi(mα,E) = mαi,E ;

the irreducibility is because if it were reducible, then one could apply θ−1i to get a factorization
of mα,E in E[x], which is impossible.

(c) In the above setting, prove that E[α1, . . . , αpm ]/F is a Galois extension, and if L̂ ∈ Int(F/K)

and L̂/F is Galois, then E[α1, . . . , αpm ] ⊆ L̂.

Outline of solution. We claim E[α1, . . . , αpm ] is a splitting field of f(x) :=
∏pm

i=1 θi(mα,E) over
F ; notice this polynomial is actually in F [x] because σ(f) = f for all σ ∈ AutF (E) and E/F is
Galois. Also notice that each αi is a root of f(x), because αi is a root of θi(mα,E). So to see
it is a splitting field we just need to see that each root of f is in this field; but each θi(mα,E)
splits in E[αi] by (b), so it splits in E[α1, . . . , αpm ], and then f splits in this field as well. Thus
we have the claim, and we notice that f is separable, as it is a product of separable polynomials
in E[x], so E[α1, . . . , αpm ]/E is Galois.

For the second claim, if L̂ ∈ Int(F/K) such that L̂/F is Galois, then because θ̂i ∈ AutF (F ) one

has that θ̂i(L̂) = L̂. In particular because α ∈ K ⊆ L one has that αi = θ̂i(α) ∈ L̂ for each i,

and then the claim E[α1, . . . , αpm ] ⊆ L̂ follows.

(d) Prove that [E[α1, . . . , αpm ] : F ] is a power of p.
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Outline of solution. Because [E : F ] is a power of p by hypothesis, it suffices to show that
[E[α1, . . . , αpm ] : E] is a power of p. If we fix some i and take K = E[αi] then [K : E] = p
by (b). Thus we are in the situation of (a), and for L = E[α1, . . . , αi−1] we deduce that
[E[α1, . . . , αi] : E[α1, . . . , αi−1]] = 1 or p. Thus the claim follows by induction on i.

7. Week 7

1. Suppose p1, . . . , pn are distinct primes. Let F := Q[
√
p1, . . . ,

√
pn].

(a) Prove that F/Q is a Galois extension and AutQ(F ) ' Z2 × · · · × Z2︸ ︷︷ ︸
n times

.

Solution. The extension is Galois because F is a splitting field of (x2 − p1) · · · (x2 − pn) over
Q. For the second claim one uses Kummer theory: notice that, if Λ is as in our notation from
Kummer theory, base field Q and n = 2, then one exactly has F = Λ(〈p1(Q×)2, . . . , pn(Q×)2〉).
As a result of Kummer theory then one has AutQ(F ) ' ̂〈p1(Q×)2, . . . , pn(Q×)2〉. First one
claims that 〈p1(Q×)2, . . . , pn(Q×)2〉 ' Z2 × · · · × Z2︸ ︷︷ ︸

n times

. To prove this claim, consider

Z2 × · · · × Z2 → 〈p1(Q×)2, . . . , pn(Q×)2〉, (ε1, . . . , εn) 7→
n∏
i=1

pεii (Q×)2.

One can prove this is an isomorphism: each generator of the right hand side is clearly in the
image, and injectivity follows from the fact that the primes are distinct, so

∏n
i=1 p

εi
i can never

be a square in Q unless each εi = 0. With this isomorphism proved one has AutQ(F ) '
̂Z2 × · · · × Z2. To simplify the right hand side, one can either show that in general Ĝ×H '

Ĝ× Ĥ for finite groups G,H, and then prove Ẑ2 ' Z2, or one can directly show that

̂Z2 × · · · × Z2 → {±1} × · · · × {±1}, χ 7→ (χ(e1), . . . , χ(en))

where ei := (0, . . . , 0, 1, 0, . . . , 0) (with a 1 in the ith position) is an isomorphism. The right-hand
side is clearly isomorphic to Z2 × · · · × Z2 so this gives the result.

(b) Prove that every K ∈ Int(F/Q) which is a quadratic extension of Q is of the form Q[
√∏

i∈I pi]
where I is a non-empty subset of {1, 2, . . . , n}.

Outline of solution. Notice that every σ ∈ AutQ(F ) must send
√
pi 7→ ±

√
pi for each i, and

these choices for i = 1, . . . , n determine σ. Thus there are at most 2n automorphisms; but
from (a) there are exactly 2n automorphisms, and thus every possibility occurs with regards
to where

√
pi is mapped to. That is, for any choice of subset I ⊆ {1, . . . , n}, there exists an

automorphism σ satisfying σ(
√
pi) =

√
pi for i ∈ I and σ(

√
pj) = −√pj for j /∈ I.

Now to the claim at hand: we claim that the subfields Q[
√∏

i∈I pi] are distinct as I varies over
different (non-empty) subsets of {1, . . . , n}. To see this, suppose I 6= J and take (without loss
of generality) some i ∈ I \ J . Take some σ sending

√
pi 7→ −

√
pi and

√
pj 7→

√
pj for j 6= i;

then σ fixes all elements of Q[
√∏

j∈J pj ] but not Q[
√∏

i∈I pi], and thus these two fields are

distinct. This gives us 2n − 1 distinct possible K ∈ Int(F/Q) which are quadratic over Q, and
if we can show there are at most 2n − 1 possible K then this shows that every such K has the
form Q[

√∏
i∈I pi].

To prove this, we notice that K ∈ Int(F/Q) correspond bijectively to index 2 subgroups of
AutQ(F ) ' Z2 × · · · × Z2, so we instead show that Z2 × · · · × Z2 has 2n − 1 subgroups of index
2. For this, one notices that an index 2 subgroup H ≤ Z2 × · · · × Z2 is equivalent giving a
surjective homomorphism Z2 × · · ·Z2 → Z2. To count the number of such homomorphisms, it
is convenient to use the language of vector spaces: both Z2 × · · · × Z2 and Z2 are Z2-vector
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spaces, and group homomorphisms Z2 × · · · × Z2 → Z2 are the same as Z2-linear maps. To
count these, we can consider the basis {e1, . . . , en} where ei := (0, . . . , 0, 1, 0, . . . , 0) with a 1
in the i-th position. Then giving a Z2-linear map Z2 × · · ·Z2 → Z2 is the same as choosing
where the basis elements go, i.e. is the same as a function {e1, . . . , en} → Z2. There are 2n such
functions, hence 2n such linear maps, and only one of these (the zero map) is not surjective.
Thus there are 2n−1 surjective linear maps, and then 2n−1 index 2 subgroups of Z2×· · ·×Z2,
as desired.

(c) Prove that F = Q[
√
p1 + · · ·+√pn].

Solution. First we claim that part (a) implies
√
p1, . . . ,

√
pn are linearly independent over Q: if

not then, after relabeling if necessary, we can write
√
pn as a Q-linear combination of

√
pi for

1 ≤ i < n, and then
√
pn ∈ Q[

√
p1, . . . ,

√
pn−1], so Q[

√
p1, . . . ,

√
pn] = Q[

√
p1, . . . ,

√
pn−1]. But

applying part (a) to both sides would imply that

Z2 × · · · × Z2︸ ︷︷ ︸
n− 1 times

' AutQ(Q[
√
p1, . . . ,

√
pn−1]) = AutQ(Q[

√
p1, . . . ,

√
pn]) ' Z2 × · · · × Z2︸ ︷︷ ︸

n times

,

yielding a contradiction. Now to show the result we show that AutQ[
√
p1+···+

√
pn](F ) = {id}. To

show this, suppose we have such an automorphism σ: then σ(
√
p1+· · ·+√pn) =

√
p1+· · ·+√pn.

Writing σ(
√
pi) = εi

√
pi for εi ∈ {±1} we have

√
p1 + · · · +√pn = ε1

√
p1 + · · · + εn

√
pn, and

rearranging one has the equation

(1− ε1)
√
p1 + · · ·+ (1− εn)

√
pn = 0.

Now by our first remark about linear independence, we conclude 1 − εi = 0 for each i, i.e.
σ(
√
pi) =

√
pi for each i, and this shows σ = id.

2. Suppose p is an odd prime and ζn := e
2πi
n for every positive integer n.

(a) Prove that Q[ζ4p] = Q[ζp, i].

Notice that ζp = ζ44p and i = ζp4p, so Q[ζp, i] ⊆ Q[ζ4p]. On the other hand, notice that (iζp)
4p = 1,

so o(iζp)|4p, and one can directly verify that (iζp)
k 6= 1 for k ∈ {2, 4, p, 2p}, and thus we see

o(iζ) = 4p. This means that iζp must generate all 4p-th roots of unity, and in particular
ζ4p ∈ 〈iζp〉 ⊆ Q[ζp, i].

(b) Prove that Q[sin( 2π
p )]/Q is a Galois extension and AutQ[sin( 2π

p )](Q[ζ4p]) = {id, τ} where τ is the

restriction of complex conjugation.

Notice that sin(2π
p ) =

ζp−ζ−1
p

2i and in particular Q[sin( 2π
p )] ⊆ Q[ζ4p]. Because AutQ(Q[ζ4p]) is

abelian it follows that Q[sin( 2π
p )]/Q is Galois. For the second claim, the inclusion {id, τ} ⊆

AutQ[sin( 2π
p )](Q[ζ4p]) is clear because Q[sin( 2π

p )] ⊆ R. For the other inclusion, we recall we

proved in (a) that iζp is a primitive 4p-th root of unity and thus Q[ζ4p] = Q[iζp]. Now taking
the equation ζp = cos( 2π

p ) + i sin( 2π
p ), multiplying by i and rearranging, one can see that iζp is

a root of the polynomial x2 + 2 sin( 2π
p )x + 1, so in particular [Q[ζ4p] : Q[sin( 2π

p )]] = [Q[iζp] :

Q[sin( 2π
p )]] ≤ 2 and this lets us conclude equality AutQ[sin( 2π

p )](Q[ζ4p]) = {id, τ}.

(c) Prove that AutQ(Q[sin( 2π
p )]) ' Z×4p

{±1} ; in particular [Q[sin( 2π
p )] : Q] = p− 1.

If ϕ : AutQ(Q[ζ4p]) → Z×4p is the isomorphism we are familiar with, then notice ϕ({1, τ}) =

{±1}, and thus one has

AutQ(Q[sin(
2π

p
)]) ' AutQ(Q[ζ4p])

AutQ[sin( 2π
p )](Q[ζ4p])

=
AutQ(Q[ζ4p])

{1, τ}
'

Z×4p
{±1}

.

The second claim follows immediately from tower law.
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3. Suppose p is prime, F is a field of characteristic zero, and a ∈ F×. Let E be a splitting field of
xp − a over F .
(a) Suppose α ∈ E is a zero of xp − a. Argue that there is an element ζ of order p in E such that

xp−a = (x−α)(x− ζα) · · · (x− ζp−1α). Suppose f ∈ F [x] divides xp−a and deg f < p. Prove
that ζi deg f is in F for some integer i.

Solution. Notice that the formal derivative of xp−a is pxp−1, and p is invertible in F because we
are in characteristic zero, so one sees that gcd(xp− a, pxp−1) = 1 which implies xp− a does not
have multiple roots. Thus we can take a root α′ 6= α of xp− a in E, and one sees that α/α′ 6= 1
but (α/α′)p = a/a = 1, and thus one can take ζ := α/α′. Because this ζ has order p we see
that α, ζα, . . . , ζp−1α are distinct roots of xp − a in E and so we get the desired decomposition
of xp − a.

For the next claim suppose f is as given. If we write f(x)g(x) = xp − a =
∏p−1
i=0 (x− ζiα) then

unique factorization in E[x] tells us that f(x) =
∏
i∈S(x − ζiα) for some non-empty proper

subset S ⊆ {0, 1, . . . , p− 1}. Looking at the constant term of this and recalling that f ∈ F [x],
we see that ζiαdeg f ∈ F where i =

∑
j∈S j.

(b) Prove that if xp − a is reducible in F [x], then xp − a has a zero in F .

Solution. If xp−a is reducible then we have some f as in part (a), with the additional hypothesis
that f is non-constant. Thus if d := deg(f) then 0 < d < p and ζiαd ∈ F . Notice this implies
that ad = (ζiαd)p, so for b := ζiαd ∈ F one has a = bd. We claim now that a is itself a p-th
power in F . For this, we notice that gcd(d, p) = 1 and write 1 = dx + py for x, y ∈ Z, then
calculate

a = adx+py = adxapy = (bx)p(ay)p = (bxay)p.

Since bxay ∈ F we see that that xp − a has a zero in F .

4. Suppose n, n1, . . . , nk are positive integers.
(a) Use a special case of Dirichlet’s theorem which says there are infinitely many primes in the

arithmetic progression {mk+ 1}∞k=1 for every positive integer m, to show that Zn is isomorphic
to a quotient of Z×p for some prime p.

Solution. Dirichlet’s theorem says we can find a prime of the form p = nk+ 1 (in fact there are
infinitely many choices). Thus n divides p− 1 = Z×p and so Zn can be written as a quotient of

Z×p : more precisely, we know because Z×p is cyclic and n|p−1 that there is a (necessarily unique)

subgroup H ≤ Z×p of order (p− 1)/n. Then Z×p /H is a cyclic group of order n so Z×p /H ' Zn.

(b) Prove that Zn1
× · · ·Znk is isomorphic to a quotient of Z×q for some q = p1 · · · pk and some

primes pi.

Solution. Using Dirichlet’s theorem choose a prime p1 of the form p1 = n1k + 1 for some k.
Using Dirichlet’s theorem, choose a prime p2 6= p1 of the form p2 = n2k + 1 for some k; notice
that Dirichlet’s theorem gives us infinitely primes to choose from, so we can avoid p1 if necessary.
Next choose p3 /∈ {p1, p2} of the form p3 = n3k+1 for some k (again we can avoid p1, p2 because
Dirichlet’s theorem gives us infinitely many choices), and continue in this fashion until one has
a sequence of distinct primes p1, . . . , pk with pi ≡ 1 mod ni. Let q = p1 · · · pk. Using Chinese
remainder theorem, and the fact about rings (A×B)× ' A× ×B×, we calculate

Z×q = (Zp1···pk)× ' (Zp1 × · · · × Zpk)× ' Z×p1 × · · · × Z×pk .

(Note: the first isomorphism, which used Chinese remainder theorem, is the reason we insist
the primes pi be distinct.) Now for each i, as in part (a) we can write Zni as a quotient of Z×pi ,
say Zni ' Z×pi/Hi. One then has

Zn1
× · · · × Znk ' Z×p1/H1 × · · · × Z×pk/Hk ' (Z×p1 × · · · × Z×pk)/(H1 × · · · ×Hk).



18 OUTLINE OF SOLUTIONS OF SOME OF THE ASSIGNMENTS

Thus combining our two isomorphisms we see that Zn1
× · · · × Znk is a quotient of Zq.

(c) Prove that there is a Galois extension F/Q such that AutQ(F ) ' Zn1 × · · · × Znk .

Solution. We know from (b) we can find q such that Zn1
× · · ·Znk ' Z×q /H for some H ≤

Z×q . The latter is isomorphic to AutQ(Q[ζq]), so if we write ϕ : AutQ(Q[ζq]) → Z×q for our

isomorphism, and let G := ϕ−1(H), then for F := Fix(G) one finds that F/Q is Galois (because
the automorphism group is abelian) and

AutQ(F ) ' AutQ(Q[ζq])/AutF (Q[ζq]) = AutQ(Q[ζq])/G ' Z×q /H ' Zn1
× · · · × Znk .

8. Week 8

1. Suppose R is a unital commutative ring and n is a positive integer. For every permutation σ ∈ Sn,
let

dσ : Rn × · · · ×Rn → R, dσ(v1, . . . ,vn) :=

n∏
j=1

vσ(j)j

where vj =

v1j...
vnj

. Let

d : Rn × · · · ×Rn → R, d(v1, . . . ,vn) :=
∑
σ∈Sn

sgn(σ)dσ(v1, . . . ,vn).

(a) Prove that for every σ ∈ Sn and integer i ∈ [1, n], dσ is an R-module homomorphism from Rn

to R with respect to vi. This means

dσ(v1, . . . ,vi−1,vi + cv′i,vi+1, . . . ,vn) = dσ(v1, . . . ,vn) + cdσ(v1, . . . ,vi−1,v
′
i,vi+1, . . . ,vn)

for every vj ’s and v′i in Rn, and c ∈ R. (We say dσ is n-linear).
(b) Prove that d is n-linear.
(c) Suppose vi = vj and τ is the transposition (i, j) ∈ Sn. Prove that for every σ ∈ Sn, we have

dστ (v1, . . . ,vn) = dσ(v1, . . . ,vn).

(d) Suppose vi = vj for some i 6= j. Prove that d(v1, . . . ,vn) = 0. (We say d is alternating.)

Solution. Let τ = (i, j); then one has a decomposition Sn = An ∪ Anτ , and thus using (c) we
have

d(v1, . . . ,vn) =
∑
σ∈Sn

sgn(σ)dσ(v1, . . . ,vn)

=
( ∑
σ∈An

sgn(σ)dσ(v1, . . . ,vn)
)

+
( ∑
σ∈An

sgn(στ)dστ (v1, . . . ,vn)
)

=
( ∑
σ∈An

dσ(v1, . . . ,vn)
)
−
( ∑
σ∈An

dσ(v1, . . . ,vn)
)

= 0.



OUTLINE OF SOLUTIONS OF SOME OF THE ASSIGNMENTS 19

(e) For every index i, we identify {1, . . . , n} \ {i} with {1, . . . , n − 1} by shifting all the numbers
more than i by 1; this means we let

`i : {1, . . . , n} \ {i} → {1, . . . , n− 1}, `i(j) :=

{
j if j < i

j − 1 if j > i.

For every σ ∈ Sn and integer i in [1, n], we let σi be the induced permutation on {1, . . . , n}
after dropping i; this means σi is the composite of the following bijections

{1, . . . , n− 1}
`−1
i−−→ {1, . . . , n} \ {i} σ−→ {1, . . . , n} \ {σ(i)}

`σ(i)−−−→ {1, . . . , n− 1}.

Let σ̂i ∈ Sn be such that σ̂i(j) = σi(j) if j < n and σ̂i(n) = n. Prove that

σ̂i = (σ(i), . . . , n)−1 σ (i, . . . , n)

where the first and the last factors are cycle permutations in Sn. Deduce that

sgn(σi) = (−1)i+σ(i) sgn(σ).

Outline of solution. For the first claim one verifies that the two permutations have the same
value at each j ∈ [1, . . . , n]; this can easily be verified easily by separating into the following
cases:
• j < i and σ(j) ≥ σ(i),
• j < i and σ(j) < σ(i),
• i ≤ j < n and σ(j + 1) ≥ σ(i),
• i ≤ j < n and σ(j + 1) < σ(i),
• j = n.

It is clear from the definition of σ̂i that sgn(σ̂i) = sgn(σi), and then we calculate

sgn(σi) = sgn(σ̂i) = sgn((σ(i), . . . , n)−1 σ (i, . . . , n))

= sgn((σ(i), . . . , n)) sgn(σ) sgn((i, . . . , n))

= (−1)n−σ(i)+1 sgn(σ) (−1)n−i+1

= (−1)i+σ(i) sgn(σ).

(f) For indexes i, k, let v
(k)
i be the (n−1)-by-1 column that we obtain after dropping the k-th row of

vi. We want to start with n column vectors in Rn, drop the j-th vector and the k-th components

of the rest to get n− 1 vectors in Rn−1. Starting with v1, . . . ,vn, we get wr := v
(k)

`−1
j (r)

. Justify

yourself that the σj(r) component of wr is the σ(`−1j (r))-th component of v`−1
j (r) if σ(j) = k.

Prove that

dσ(v1, . . . ,vj−1, ek,vj+1, . . . ,vn) =

{
dσj (v

(k)

`−1
j (1)

, . . . ,v
(k)

`−1
j (n−1)) if σ(j) = k

0 otherwise,

where ei is the column matrix with 1 in its i-th row and 0 in the rest of entries.
(g) Prove that

d(v1, . . . ,vj−1, ek,vj+1, . . . ,vn) = (−1)j+kd(v
(k)

`−1
j (1)

, . . . ,v
(k)

`−1
j (n−1)),

and deduce that

(1) d(v1, . . . ,vn) =

n∑
k=1

(−1)j+kvkj d(v
(k)

`−1
j (1)

, . . . ,v
(k)

`−1
j (n−1)).
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Using the definition of d and using parts (e) and (f) we have

d(v1, . . . ,vj−1, ek,vj+1, . . . ,vn) =
∑
σ∈Sn

sgn(σ)dσ(v1, . . . ,vj−1, ek,vj+1, . . . ,vn)

=
∑
σ∈Sn
σ(j)=k

(−1)j+σ(j)dσj (v
(k)

`−1
j (1)

, . . . ,v
(k)

`−1
j (n−1))

= (−1)j+k
∑

σ∈Sn−1

dσ(v
(k)

`−1
j (1)

, . . . ,v
(k)

`−1
j (n−1))

= (−1)j+1d(v
(k)

`−1
j (1)

, . . . ,v
(k)

`−1
j (n−1)).

For the second claim we write vj =
∑n
i=1 vkjek and expand using linearity in the j-th compo-

nent:

d(v1, . . . ,vn) = d(v1, . . . ,vj−1,

n∑
k=1

vkjek,vj+1, . . . ,vn)

=

n∑
k=1

vkjd(v1, . . . ,vj−1, ek,vj+1, . . . ,vn)

=

n∑
k=1

(−1)j+kvkj d(v
(k)

`−1
j (1)

, . . . ,v
(k)

`−1
j (n−1)).

2. Suppose R is a unital commutative ring and f : Rn × Rn → R is bilinear; that means it is an
R-module homomorphism with respect to each component separately. Suppose f(v,v) = 0 for every
v ∈ Rn. Prove that f(v,w) = −f(w,v) for every v,w ∈ Rn. (Hint. Consider f(v + w,v + w).)

Solution. Using biliearity one computes

f(v + w,v + w) = f(v,v + w) + f(w,v + w)

= f(v,v) + f(v,w) + f(w,v) + f(w,w)

= f(v,w) + f(w,v).

From this one subtracts to deduce the result.

3. Suppose R is a unital commutative ring and n is a positive integer n. Suppose f : Rn×· · ·×Rn → R
is n-linear and alternating.
(a) Write vj =

∑n
i=1 vijei where ei is the column matrix with 1 in its i-th row and 0 in the rest of

entries. Argue why

f(v1, . . . ,vn) =
∑
σ∈Sn

f(eσ(1), . . . , eσ(n))

n∏
j=1

vσ(j)j .

(b) Argue why f(eσ(1), . . . , eσ(n)) = sgn(σ)f(e1, . . . , en) for every σ ∈ Sn.
(c) Prove that f = f(e1, . . . , en)d where d is the function given in the first problem.

4. Suppose R is a unital commutative ring, n is a positive integer, and A ∈ Mn(R). Let

fA : Rn × · · · ×Rn → R, fA(v1, . . . ,vn) := d(Av1, . . . , Avn),

where d is the function given in problem 1. Let

det : Mn(R)→ det(X) := d(x1, . . . ,xn),

where xj is the j-th column of X.



OUTLINE OF SOLUTIONS OF SOME OF THE ASSIGNMENTS 21

(a) Prove that fA is n-linear and alternating.

For any choice of i and vectors vi,v
′
i and c ∈ R we have

fA(v1, . . . ,vi−1,vi + cv′i,vi+1, . . . ,vn) = d(Av1, . . . , Avi−1, A(vi + cv′i), Avi+1, . . . , Avn)

= d(Av1, . . . , Avi−1, Avi + cAv′i, Avi+1, . . . , Avn)

= d(Av1 . . . , Avi−1, Avi, Avi+1, . . . , Avn) + cd(Av1, . . . , Avi−1, Av
′
i, Avi+1, . . . , Avn)

= fA(v1, . . . ,vi−1,vi,vi+1, . . . ,vn) + cfA(v1, . . . ,vi−1,v
′
i,vi+1, . . . ,vn),

where we’ve used the fact that d is n-linear. The fact that fA is alternating follows similarly
from the fact that d is alternating.

(b) Prove that fA(x1, . . . ,xn) = det(AX) where xj is the j-th column of X.
(c) Prove that det(XY ) = det(X) det(Y ) for every X,Y ∈ Mn(R).

From part (a), we know fX is n-linear and alternating, which lets us apply problem 3 to se
that fX = fX(e1, . . . , en)d; notice that by definition fX(e1, . . . , en) = d(Xe1, . . . , Xen) =
d(x1, . . . ,xn) where x1, . . . ,xn are the columns of X. Now using part (b), if we let y1, . . . ,yn
denote the columns of Y we have

det(XY ) = fX(y1, . . . ,yn) = fX(e1, . . . , en)d(y1, . . . ,yn) = d(x1, . . . ,xn)d(y1, . . . ,yn) = det(X) det(Y ).

(d) For X ∈ Mn(R) and indexes i, j, let Xij be the (n− 1)-by-(n− 1) matrix that we obtain after
dropping the i-th row and the j-th column of X. Use (1) and prove that

det(X) =

n∑
k=1

(−1)j+kxkj det(Xkj).

(e) For X ∈ Mn(R), we define the adjoint adj(X) of X as an n-by-n matrix with the (j, k)-entry
equals to (−1)j+k det(Xkj), where Xkj is as in the previous part. Use the previous part to show

adj(X)X = det(X)I.

Let aij = (−1)i+j det(Xji) denote the (i, j)-th entry of adj(X). The (i, j)-th entry of adj(X)X
is by definition given by

n∑
k=1

aikxkj =

n∑
k=1

(−1)i+kxkj det(Xki).

One can immediately see from part (d) that if i = j then this is equal to det(X), so we just need
to show this quantity is zero when i 6= j. For this, let X ′ = (x′pq) denote the matrix obtained
by replacing the i-th column of X by the j-th column, i.e.

x′pq :=

{
xpq if q 6= i

xpj , if q = i.

Then taking the expansion on the i-th column (i.e. applying (d)) we have

det(X ′) =

n∑
k=1

(−1)i+kx′ki det(X ′ki) =

n∑
k=1

(−1)i+kxkj det(Xki),

and this is exactly equal to the (i, j)-th entry of adj(X)X as above, but we see that this quantity
is zero because X ′ has a repeated column, so det(X ′) = 0. This gives the result.
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(f) Justify why det(X) = det(Xt) where Xt is the transpose of X, and deduce that we could work
with rows of X instead of its columns, and we obtain

det(X) =

n∑
j=1

(−1)j+kxkj det(Xkj),

and so

X adj(X) = det(X)I.

9. Week 9

1. For a finite abelian group A, let Â be its dual group.

(a) Suppose A1 and A2 are two finite abelian groups. Prove that ̂A1 ×A2 ' Â1 × Â2.

Solution. Given a homomorphism χ : A1×A2 → S1, one can consider the associated homomor-
phism χ1 : A1 → S1 defined by χ1(a1) = χ(a1, 1), and similarly one has χ2 : A2 → S1 given by
χ2(a2) = χ(1, a2). If one defines a function

̂A1 ×A2 → Â1 × Â2, χ 7→ (χ1, χ2),

then one can easily verify this is an injective homomorphism. In addition, one has

| ̂A1 ×A2| = |A1 ×A2| = |A1| |A2| = |Â1| |Â2| = |Â1 × Â2|,
and from this we conclude the map we’ve defined is actually an isomorphism.

(b) Suppose A is a finite cyclic group. Prove that Â is a cyclic group and deduce that A ' Â.

Solution. Write A = 〈a〉 and n = |A|. Notice that for any χ ∈ Â one has

χ(a)n = χ(an) = χ(1) = 1,

so χ(a) ∈ S1 is an n-th root of unity. Let Mn denote the n-th roots of unity in S1, which we
know to be a cyclic group of order n. Our previous remark means that we have a function

Â→Mn, χ 7→ χ(a).

We claim this is an injective homomorphism; if this is the case, then we are done as it proves

Â is a cyclic group, and we know that |Â| = |A|. To see the claim, we first need to show it
is a homomorphism, which amounts to the claim that (χχ′)(a) = χ(a)χ′(a), and this is simply

from the definition of the group operation on Â. For injectivity, one has that χ(a) = 1 implies
χ(ak) = χ(a)k = 1 for any k, which implies χ is the trivial homomorphism, i.e. the identity

element of Â. This shows injectivity and so we are done.

Notice that there is not a single choice of isomorphism A ' Â we have come up with in this

proof; rather, we have that both A and Â are cyclic of the same order, we know that if we let a

be a generator of A and χ a generator of Â, then we can get an isomorphism A ' Â by sending
a 7→ χ. The fact that this depends heavily on some choices of generators is sometimes phrased
as the two groups being non-canonically isomorphic. You should compare this with the case

of the isomorphism A ' ̂̂A, which really is an explicit isomorphism (that does not require any
choices); the latter one would often call canonical.

(c) Suppose A is a finite abelian group. Prove A ' Â.

Solution. By the classification of finite abelian groups, one has A ' Zd1 × · · · × Zdr for some
integers di ∈ Z+. Then using the previous two parts one has

Â ' ̂Zd1 × · · · × Zdr = Ẑd1 × · · · × Ẑdr ' Zd1 × · · · × Zdr ' A.
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2. Suppose Ai’s are square matrices with entries in a unital commutative ring R. Prove that

det


A1 ∗ · · · ∗

A2 · · · ∗
...

...
. . . 0

0 0 · · · An

 =

n∏
i=1

detAi.

Solution. Using a straightforward induction argument, it suffices to prove the n = 2 case. In this
case we write A for the matrix in question, and write its entries as A = [vij ]1≤i,j≤m so

A1 =

v11 · · · v1`
...

. . .
...

v`1 · · · v``

 and A2 =

v`+1,`+1 · · · v`+1,m

...
. . .

...
vm1 · · · vmm


for some ` with vij = 0 whenever i ∈ [1, `] and j ∈ [` + 1,m]. Recall by definition the determi-
nant of our matrix is a sum over products of elements vσ(j)j for σ ∈ Sm and j ∈ [1,m]; notice if
σ({1, . . . , `}) 6⊆ {1, . . . , `} then there exists some j ∈ [1, `] with σ(j) ∈ [` + 1,m] and so vσ(j)j = 0.
As a result one has

detA =
∑
σ∈Sm

sgn(σ)

m∏
j=1

vσ(j)j =
∑
σ∈Sm

σ({1,...,`})={1,...,`}

sgn(σ)

m∏
j=1

vσ(j)j .

Now notice that an element σ ∈ Sm with σ({1, . . . , `}) = {1, . . . , `} also satisfies σ({`+ 1, . . . ,m}) =
{`+ 1, . . . ,m}. As a result any such σ is equal to σ1σ2 for σ1 ∈ S{1,...,`} and σ2 ∈ S{`+1,...,m} (and
conversely, any such product σ = σ1σ2 satisfies σ({1, . . . , `}) = {1, . . . , `}), so we can upgrade the
above equality to

detA =
∑

σ1∈S{1,...,`},σ2∈S{`+1,...,m}

sgn(σ1σ2)

m∏
j=1

v(σ1σ2)(j)j

=
∑

σ1∈S{1,...,`},σ2∈S{`+1,...,m}

(
sgn(σ1)

∏̀
j=1

vσ1(j)j

)(
sgn(σ2)

m∏
j=`+1

vσ2(j)j

)
=

( ∑
σ1∈S{1,...,`}

sgn(σ1)
∏̀
j=1

vσ(j)j

)( ∑
σ2∈S{`+1,...,m}

sgn(σ2)

m∏
j=`+1

vσ2(j)j

)
= det(A1) det(A2).

3. Recall an element a of a ring is called nilpotent if ak = 0 for some positive integer k.
(a) Suppose F is a field and A ∈ Mn(F ) is nilpotent. Prove that the characteristic polynomial of

A is xn, and deduce that An = 0.

Solution. By assumption Ak = 0 for some k ∈ Z+. This means p(A) = 0 for p(x) = xk ∈ F [x];
as a result one has that mA,F (x)|xk. By unique factorization we see that mA,F is a power of
x. Now if we consider a rational canonical form of A (or, rather, let T : Fn → Fn be the linear
map determined by A with respect to the standard basis and consider a rational canonical form
of T ), then we obtain polynomials p1|p2| · · · |pr with pr = mT,F = mA,F and fA = fT =

∏
i pi.

From the fact that pi|mA,F for each i we have that each pi is a power of x, but then also
fA =

∏
i pi is a power of x as well. But deg(fA) = n so we find fA(x) = xn as desired. The

latter claim follows because any matrix satisfies its characteristic polynomial.
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(b) Suppose R is a commutative unital ring. Suppose A ∈ Mn(R) is nilpotent and P is a prime
ideal of R. Prove that all the entries of An are in P .

Solution. Recall that R/P is an integral domain, so one can consider F = Q(R/P ) for which
one has an embedding A/P ↪→ F . If we consider the composition of ring homomorphisms

Mn(R)→Mn(R/P ) ↪→Mn(F ),

and call this π, then one sees that π(A) is nilpotent because A is, and then (a) implies that
π(A)n = 0 in Mn(F ), i.e. π(An) = 0 in Mn(F ), which implies π(An) = 0 in Mn(R/P ), which
implies all entries of An are inside P .

(c) Suppose R is a unital commutative ring which has no nonzero nilpotent elements. Suppose
A ∈Mn(R) is nilpotent. Prove that An = 0.

Solution. We know from (b) that if P is any prime ideal of R, then all entries of An lie in R,
in other words each entry of An lies in the intersection of all prime ideals of R, which we’ve
seen in class is exactly the set of nilpotent elements of A. Because A has no nonzero nilpotent
elements, we conclude that all entries of An are zero, i.e. An = 0.

4. Suppose E/F is a finite Galois extension and AutF (E) = 〈σ〉 is a cyclic group of order n. For a ∈ E,
let τa : E → E, τa(e) := aσ(e). Notice that ta is an F -linear map.
(a) Prove that the minimal polynomial of τa is p(x) := xn −NE/F (a).

Solution. One can show with a straightforward induction on k that τka (e) = (
∏k−1
i=0 σ

i(a))σk(e).

In particular one finds τna (e) = (
∏n−1
i=0 σ

i(a))σn(e) = NE/F (a)e; we conclude τna − NE/F (a) is
the zero linear transformation, so the minimal polynomial of τa divides xn−NE/F (a). We claim
this is the smallest possible degree; for this, suppose one has

cn−1τ
n−1
a + · · ·+ c1τa + c0 id = 0

for ci ∈ F . Recalling our description of τka and writing ak :=
∏k−1
i=0 σ

i(a), we have for e ∈ E

0 = cn−1τ
n−1
a (e) + · · ·+ c0 id(e) = (an−1cn−1)σn−1(e) + · · ·+ (a1c1)σ(e) + (a0c0)e.

Now thinking of the σk as homomorphisms E× → E× (which are distinct for k = 0, . . . , n− 1)
and using independence of characters, we deduce that each akck = 0 for k ∈ [0, n − 1]; now
noticing that ak 6= 0, we have ck = 0 for each k. This shows our original claim that τa does not
satisfy any polynomial of degree < n, so we conclude xn −NE/F (a) is the minimal polynomial
of τa.

(b) Prove that the companion C(p) of the polynomial p(x) = xn −NE/F (a) is a rational canonical
form of τa.

Solution. We have seen in class that there is a rational canonical form of τa of the formC(d1) · · · 0
...

. . .
...

0 · · · C(dr)


where di ∈ F [x] satisfy d1|d2| · · · |dr, dr = mτa,F and fτa =

∏r
i=1 di. Using (a) then we see dr =

p, and the latter claim in particular says dr|fτa , but we have deg(dr) = deg(p) = n = deg(fτa),
so we conclude by comparing degrees that fτa = dr = p and r = 1. In particular we see that
C(dr) = C(p) is a rational canonical form of τa.

(c) (Hilbert’s theorem 90) Suppose NE/F (a) = 1 and argue why C(p)(e1 + · · ·+en) = e1 + · · ·+en.
Deduce that a = e

σ(e) for some e ∈ E.
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Solution. If NE/F (a) = 1, using (a) one has p(x) = xn − 1, and so

C(p) =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

As a result we see that C(p)(ei) = ei+1 for each i (with C(p)(en) = e1), and from this it is
clear that C(p)(e1 + · · ·+ en) = e1 + · · ·+ en.

This tells us that the matrix C(p) has a fixed point, so τa must also have a fixed point; if we
call it e then τa(e) = e means aσ(e) = e, or a = e

σ(e) , as desired.

(d) Use part (b) for τ1 = σ and prove that there is e0 ∈ E such that B0 := {e0, σ(e0), . . . , σn−1(e0)}
is an F -basis of E.

Solution. For a = 1 we see σ has a rational canonical form given by C(p) where p(x) = xn − 1,
i.e. (as above)

C(p) =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0.


The rational canonical form of a linear transformation is a matrix representation with respect to
a particular basis, which means there is an F -basis B = {e0, e1, . . . , en−1} of E with respect to
which C(p) represents σ. But one can clearly see from the matrix reprentation that e1 = σ(e0),
and then e2 = σ(e1) = σ2(e0), and similarly ei = σi(e0) for each i ∈ [0, n− 1], which shows this
matrix B is of the desired form.

5. Suppose E/F is a finite Galois extension and AutF (E) = 〈σ〉 is a cyclic group of order n. For a ∈ E,
let TE/F (a) := a+ σ(a) + · · ·+ σn−1(a).
(a) Suppose B0 is the F -basis of E given in 4(d). Notice that [σ]B0

is the companion matrix of

xn − 1. Prove that TE/F (a) = 0 if and only if c1 + · · ·+ cn = 0 where [a]B0
=

c1...
cn

.

Solution. From the description of [σ]B0
one can quickly see that

[σ]B0


c1
c2
...
cn

 =


cn
c1
...

cn−1

 and [σ2]B0


c1
c2
...
cn

 =


cn−1
cn
...

cn−2

 ,

and continuing one sees that

[TE/F ]B0


c1
c2
...
cn

 =


c1 + · · ·+ cn
c1 + · · ·+ cn

...
c1 + · · ·+ cn

 .
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Thus if a ∈ E with [a]B0 =

c1...
cn

, one has

TE/F (a) = 0 ⇐⇒ [TE/F ]B0

c1...
cn

 = 0 ⇐⇒ c1 + · · ·+ cn = 0.

(b) Suppose for c1, . . . , cn ∈ F we have
∑n
i=1 ci = 0. Prove that

−1 0 0 · · · 0 1
1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 0
0 0 0 · · · 1 −1


x =

c1...
cn



has a solution in Fn.

Solution. This is the same as solving the system of equations

x2 − x1 = c1

x3 − x2 = c2

...

xn − xn−1 = cn−1

x1 − xn = cn

for values x1, . . . , xn ∈ F . If one lets x1 be any value, then the rest of the values are automati-
cally determined from the equations and determine a valid solution; for example if we take for
simplicity x1 = 0 then x2 = c1, x3 = c1+c2 and for each i, xi = c1+ · · ·+ci−1, and in particular
xn = c1 + · · ·+ cn−1 = −cn which shows the final necessary equality holds above.

(c) (Additive Hilbert’s theorem 90) Suppose a ∈ E such that TE/F (a) = 0. Prove that there is
e ∈ E such that σ(e)− e = a.

Notice the matrix from part (b) represents the linear transformation σ− id with respect to the

basis B0 from (a). If TE/F (a) = 0 then from (a) one has [a]B0 =

c1...
cn

 with c1 + · · ·+ cn = 0,

and then (b) guarantees an element x ∈ Fn with [σ − id]B0
x = [a]B0

. One has x = [e]B0
for

some e ∈ E, and then for this e we see that (σ − id)(e) = a, i.e. σ(e)− e = a as desired.

10. Week 1

1. Suppose A is a unital commutative ring, n is a positive integer, and f : An → An is a surjective
A-module homomorphism.
(a) Suppose A is a Noetherian ring.

(i) Argue why An is a Noetherian A-module.

Solution. Notice that An is generated by ei’s as an A-module. Hence An is a finitely gen-
erated A-module. By Theorem 38.1.2, every finitely generated module over a Noetherian
ring is a Noetherian module. Hence An is a Noetherian A-module.
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(ii) Show that there is an integer n0 such that for every integer i ≥ n0, ker f (n0) = ker f (i).

Solution. We have an increasing chain of submodules of An given by

ker f ⊆ ker f (2) ⊆ · · · ⊆ ker f (n) ⊆ · · · ,

so part (a) implies that there is some n0 for which ker f (n0) = ker f (i) as desired.

(iii) Suppose x ∈ ker f (n0). Argue that x = f (n0)(y) for some y. Deduce that y ∈ ker f (2n0).
Use this to show that x = 0.

Solution. Because f is surjective, then so is f (n) for any n; in particular f (n0) is surjective
so there exists some y ∈ An such that x = f (n0)(y). But then notice that f (2n0)(y) =
f (n0)(f (n0)(y)) = f (n0)(x) = 0, so y ∈ ker f (2n0). But from part (b) we have ker f (2n0) =
ker f (n0), so y ∈ ker f (n0), and then x = f (n0)(y) = 0.

(iv) Prove that f is an isomorphism.

Solution. In part (c) we showed that ker f (n0) = 0, but then also ker f = 0, i.e. f is
injective, hence an isomorphism.

(b) Suppose A is an arbitrary unital commutative ring.
(i) Show that there are Mf = [aij ] ∈Mn(A) and M ′ = [a′ij ] ∈Mn(A) such that

f(x1, . . . , xn) = (

n∑
j=1

a1jxn, . . . ,

n∑
j=1

anjxn)

and MfM
′ = In. Argue that f is an isomorphism if and only if Mf ∈ GLn(A).

Solution. Let ej = (0, . . . , 0, 1, 0, . . . , 0) with a 1 in the j-th position; then the aij desired
are exactly the elements such that f(ej) = (a1j , . . . , anj). The formula for f follows from
expanding linearly:

f(x1, . . . , xn) = f(
∑
j

xjej) =
∑
j

xjf(ej)

=
∑
j

xj(a1j , . . . , anj)

= (
∑
j

a1jxj , . . . ,
∑
j

anjxj).

To find the desired elements a′ij , we use the fact that f is linear, so for each j there is
some element (a′1j , . . . , a

′
nj) ∈ An such that f(a′1j , . . . , a

′
nj) = ej . To see the identity

MfM
′ = In, it suffices to check that (MfM

′) · ej = ej for each j (where we consider ej
as a column vector); this follows from the choice of a′ij , more precisely

(MfM
′) · ej = Mf · (M ′ · ej) = Mf ·

a
′
1j
...
a′nj

 = ej .

The main point of the last claim is that Mf is a matrix representation of the homomor-
phism f , so Mf is invertible if and only if f is; more precisely, if Mf is an isomorphism,

then an inverse matrix M−1f defines an A-module homomorphism An → An by matrix
multiplication, which will be an inverse for f , and conversely if f is an isomorphism then
we could choose a matrix representation for f−1 (in the same way we constructed Mf

here), which will be an inverse for Mf .



28 OUTLINE OF SOLUTIONS OF SOME OF THE ASSIGNMENTS

(ii) Let A′ be the subring of A which is generated by the aij ’s and a′ij ’s. Argue that

Mf× : Mn,1(A′)→Mn,1(A′), x 7→Mfx

is a surjective A′-module homomorphism.

Solution. Notice the fact that Mf has entries in A′ implies the map is well-defined, i.e. it
actually sends elements of Mn,1(A′) to Mn,1(A′). Checking the map is a homomorphism
is straightforward. For surjectivity we use MfM

′ = In: for any y ∈Mn,1(A′) one has

y = (MfM
′) · y = Mf · (M ′ · y),

which shows that M ′ · y is a preimage of y under the given homomorphism (notice that
M ′ · y ∈Mn,1(A′) holds because M ′ and y both have entries all inside A′).

(iii) Prove that Mf ∈ GLn(A′) and deduce that f is an isomorphism.

Solution. By Theorem 41.3.5, every finitely generated ring is Noetherian, and so A′ is
Noetherian. But then we see that we can apply part 1(a), where we have seen that
in the Noetherian situation, a surjective module homomorphism (A′)n → (A′)n is an
isomorphism. Thus Mf× : Mn,1(A′)→Mn,1(A′) is an isomorphism, so Mf ∈ GLn(A′) ⊆
GLn(A), and thus Mf ∈ GLn(A) which we have remarked in part (i) implies f is an
isomorphism.


