QUIZ 3, VERSION B, MATH100B, WINTER 2021

1. (5 points) Suppose p is prime. Prove that $x^{p-1}+x^{p-2}+\cdots+1 \in \mathbb{Q}[x]$ is irreducible.
2. (5 points) Suppose every ideal of a unital commutative ring A is finitely generated. Prove that A is Noetherian.
3. Suppose A is a subring of B, B is a unital commutative ring, $1_{B} \in A$, and I is an ideal of B.
(a) (3 points) Prove that $f: A \rightarrow B / I, f(a):=a+I$ is a ring homomorphism and ker $f=I \cap A$.
(b) (5 points) Prove that if I is a prime ideal of B, then $I \cap A$ is a prime ideal of A.
(c) (2 points) Provide an example where I is a maximal ideal of B, but $I \cap A$ is not a maximal ideal of A.
4. Suppose p is prime and $f(x):=\left(x^{p}-x+1\right)^{2}+p$.
(a) (5 points) Suppose $f(x)=q(x) h(x)$ for some monic non-constant polynomials $q, h \in \mathbb{Z}[x]$. Prove that there are polynomial $q_{1}, h_{1} \in \mathbb{Z}[x]$ such that

$$
q(x)=x^{p}-x+1+p q_{1}(x), \text { and } h(x)=x^{p}-x+1+p h_{1}(x)
$$

(You are allowed to use a relevant result from HW assignment after you carefully state it.)
(b) (3 points) Suppose q_{1} and h_{1} are as in the previous part. Prove that

$$
\left(x^{p}-x+1\right)\left(q_{1}+h_{1}\right) \equiv 1 \quad(\bmod p)
$$

and discuss why this is a contradiction.
(c) (2 points) Prove that $f(x)$ is irreducible in $\mathbb{Q}[x]$.

