Name:					
DID.					

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total:	60	

- 1. Write your Name, PID, and Section on the front of your Blue Book.
- 2. No calculators or other electronic devices are allowed during this exam.
- 3. You may not use books or other assistance during this exam.
- 4. Read each question carefully, and answer each question completely.
- 5. Write your solutions clearly in your Blue Book
 - (a) Carefully indicate the number and letter of each question.
 - (b) Present your answers in the same order they appear in the exam.
- 6. Show all of your work; no credit will be given for unsupported answers.
- 1. (10 points) Show that $\mathbb{Z}_{12} \times \mathbb{Z}_9$ is not cyclic.
- 2. (10 points) Let $G = \langle a \rangle$ be a finite group of size n. Show that

$$|\{g \in G | o(g) = n\}| = \phi(n).$$

- 3. Let H be a subgroup of $G = \langle a \rangle$.
 - (a) (5 points) Show that $I_H := \{ m \in \mathbb{Z} | a^m \in H \}$ is a subgroup of \mathbb{Z} .
 - (b) (5 points) Show that H is cyclic.
- 4. (10 points) Let G be a finite group, p be a prime, and X be a finite set. Suppose G acts from left on X, and |G| = p. Show that for any $x \in X$ either x is a fixed point, i.e. for any $g \in G$ we have $g \cdot x = x$, or the size |O(x)| of the orbit of x is divisible by p.

Hint: Think about the connection between O(x) and the stabilizer subgroup G_x . And use Lagrange!

- 5. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 8 & 1 & 2 & 5 & 3 & 4 & 7 \end{pmatrix}$.
 - (a) (3 points) Write σ as a product of disjoint cycles.
 - (b) (5 points) Find $o(\sigma)$. Justify your answer.
 - (c) (2 points) Are there a 3-cycle c and a 5-cycle c' such that o(cc') = 8 (not necessarily disjoint)? Justify your answer. (This part has nothing to do with the first two parts!)
- 6. (10 points) (EXTRA CREDIT) Can the following arrangement happen in the 15-puzzle? Justify your answer.

2	1	4	3
6	5	8	9
7	14	10	11
12	13	15	

(Hint:

- 1. Think about permutations in S_{16} .
- 2. What is a single slide as a permutation?
- 3. What can you say about the number of slides to get to this arrangement?)

Good Luck!