Math 100A - Fall 2019 - Midterm II

Problem 1.

Let G denote the cyclic group of order 20, and let g be a generator.
(i) Write down, in terms of g, all other generators of G.
(ii) List all automorphisms $f: G \rightarrow G$.
(iii) List all subgroups of G.
(iv) List all elements of G of order 4 .

Solution:

(i) We showed in class that all generators of G are of the form g^{k} with $\operatorname{gcd}(k, 20)=1$ and $0 \leq k<20$. In our case, these are

$$
g, g^{3}, g^{7}, g^{9}, g^{11}, g^{13}, g^{17}, g^{19}
$$

(ii) There are exactly 8 automorphisms of G, corresponding to mapping g to one of the above generators. We obtain the following automorphisms

$$
\begin{gathered}
f_{1}(x)=x, f_{3}(x)=x^{3}, \quad f_{7}(x)=x^{7}, \quad f_{9}(x)=x^{9}, \\
f_{11}(x)=x^{11}, f_{13}(x)=x^{13}, f_{17}(x)=x^{17}, \quad f_{19}(x)=x^{19}
\end{gathered}
$$

(iii) For each divisor k of 20 we have a unique subgroup of order k generated by $g^{\frac{20}{k}}$. We obtain 6 subgroups

$$
H_{1}=\left\langle g^{20}\right\rangle=\{1\}, H_{2}=\left\langle g^{10}\right\rangle H_{4}=\left\langle g^{5}\right\rangle, H_{5}=\left\langle g^{4}\right\rangle, H_{10}=\left\langle g^{2}\right\rangle, H_{20}=\langle g\rangle .
$$

(iv) The generator g has order 20 by hypothesis. Let g^{k} be an element of order 4 with $0 \leq k<20$. By a theorem in class,

$$
o\left(g^{k}\right)=\frac{20}{\operatorname{gcd}(k, 20)}=4 \Longleftrightarrow \operatorname{gcd}(k, 20)=5 .
$$

This yields the values $k=5, k=15$ so the only elements of order 4 are g^{5}, g^{15}.

Problem 2.

Let $f: G \rightarrow H$ be a group homomorphism, and let $K=\operatorname{Ker} f=\{g: f(g)=1\}$. We have seen in class that K is a subgroup.
(i) Show that K is a subgroup of G.
(ii) Prove that if $g \in G$ then $g K g^{-1} \subset K$.
(iii) Conclude that K is a normal subgroup of G.
(iv) Let G be the group of 2×2 invertible matrices with real entries. Give an example of a normal H subgroup of $G, H \neq\{1\}$ and $H \neq G$.

Solution:

(i) Let $x, y \in K$. We show $x y^{-1} \in K$. This proves K is a subgroup.

Since $x, y \in K$, we have

$$
f(x)=1, f(y)=1 .
$$

By the properties of homomorphisms we have

$$
f\left(x y^{-1}\right)=f(x) f\left(y^{-1}\right)=f(x) f(y)^{-1}=1 \cdot 1^{-1}=1 .
$$

This shows that $x y^{-1} \in K$, as needed.
(ii) We show $g K g^{-1} \subset K$. Let

$$
x \in g K g^{-1} \Longrightarrow x=g k g^{-1} \text { for some } k \in K
$$

Then $f(k)=1$. We compute

$$
f(x)=f\left(g k g^{-1}\right)=f(g) f(k) f\left(g^{-1}\right)=f(g) f(k) f(g)^{-1}=f(g) f(g)^{-1}=1 .
$$

Thus $x \in K$, completing the proof.
(iii) Since g is arbitrary, we can replace g by g^{-1} in part (ii) thus obtaining

$$
g^{-1} K g \subset K
$$

Multiplying to the left by g and the right by g^{-1} we obtain

$$
K=g\left(g^{-1} K g\right) g^{-1} \subset g K g^{-1} .
$$

In part (ii) we showed the opposite inclusion. Therefore $g K g^{-1}=K$ for all $g \in G$, so K is normal.
(iv) Let $G^{\prime}=\mathbb{R} \backslash\{0\}$. This is a group under multiplication. Let

$$
f: G \rightarrow G^{\prime}, A \mapsto \operatorname{det} A .
$$

This is a homomorphism as shown in class

$$
f(A B)=\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B=f(A) f(B) .
$$

The kernel of $H=\operatorname{Ker} f$ is the group of 2×2 matrices with determinant 1. This group was denoted by $S L_{2}(\mathbb{R})$. Clearly $H \neq\{1\}$ and $H \neq G$. By part (iii), H is normal.

Problem 3.

Let $G=\langle g\rangle$ and $H=\langle h\rangle$ be cyclic groups of orders m and n.
(i) If $\operatorname{gcd}(m, n)=1$, show that $(g, h) \in G \times H$ is an element of order $m n$ in $G \times H$. Conclude that $G \times H$ is also cyclic.
(ii) If $\operatorname{gcd}(m, n)=d \neq 1$ show that $G \times H$ is not cyclic.

Solution:

(i) As shown in class, for a cyclic group we have $|G|=o(g)$. Thus $o(g)=m$. Similarly $o(h)=n$. In particular

$$
g^{m}=1, h^{n}=1
$$

Consequently,

$$
\begin{gathered}
g^{m n}=\left(g^{m}\right)^{n}=1^{n}=1 \\
h^{m n}=\left(h^{n}\right)^{m}=1 .
\end{gathered}
$$

Therefore

$$
(g, h)^{m n}=\left(g^{m n}, h^{m n}\right)=(1,1) .
$$

Note that the pair $(1,1)$ serves as identity in $G \times H$. In particular

$$
o((g, h)) \mid m n .
$$

Conversely, we show that

$$
m n \mid o((g, h))
$$

proving therefore that $o((g, h))=m n$.
Indeed, let (g, h) have order N. Then

$$
(g, h)^{N}=(1,1) \Longrightarrow\left(g^{N}, h^{N}\right)=(1,1) \Longrightarrow g^{N}=1, h^{N}=1 .
$$

Since

$$
g^{N}=1 \Longrightarrow o(g)|N \Longrightarrow m| N
$$

and similarly

$$
h^{N}=1 \Longrightarrow o(h)|N \Longrightarrow n| N .
$$

Since $\operatorname{gcd}(m, n)=1$ it follows $m n \mid N$ as claimed.
We have shown that (g, h) has order mn. Thus $\langle(g, h)\rangle$ is a subgroup of $G \times H$ of cardinality $o((g, h))=m n$. But $G \times H$ also has mn elements. Thus we must have equality

$$
G \times H=\langle(g, h)\rangle,
$$

also proving $G \times H$ is cyclic.
(ii) If $d=\operatorname{gcd}(m, n) \neq 1$, we claim $G \times H$ has no element of order $m n$ so in particular it cannot be cyclic. (For a cyclic group, the generator has order the size of the group, namely $m n=|G \times H|$ in our case.)

Indeed, if $x \in G \times H$ we claim

$$
x^{\frac{m n}{d}}=(1,1)
$$

so that $o(x) \leq \frac{m n}{d}<m n$. To this end, write $x=(a, b)$ where $a \in G$ and $b \in H$. Write

$$
a=g^{k}, b=h^{\ell} .
$$

Thus

$$
a^{\frac{m n}{d}}=g^{\frac{k m n}{d}}=\left(g^{m}\right)^{\frac{n}{d} \cdot k}=1 .
$$

Here, we used that n / d is an integer and $g^{m}=1$. Similarly

$$
b^{\frac{m n}{d}}=1 .
$$

Thus

$$
x^{\frac{m n}{d}}=\left(a^{\frac{m n}{d}}, b^{\frac{m n}{d}}\right)=(1,1) .
$$

Problem 4.

(i) Show that if $\sigma \in S_{n}$ satisfies $\sigma^{3}=\epsilon$, then σ is a product of disjoint cycles of length 3 .
(ii) Let G be a group. For each $a \in G$, let

$$
\sigma_{a}: G \rightarrow G, \sigma_{a}(g)=a g a^{-1}
$$

be the associated inner automorphism. Let

$$
f: G \rightarrow \operatorname{Inn}(G), a \mapsto \sigma_{a}
$$

We have seen in class that f is a homomorphism. Show that the kernel of f equals the center $Z(G)$
(iii) For each $n \geq 3$, show that $\operatorname{Aut}\left(S_{n}\right)$ contains an element of order exactly 3 .

Solution:
(i) Since $\sigma^{3}=\epsilon$, if follows that the order of σ divides 3. Write σ as product of disjoint cycles of lengths n_{1}, \ldots, n_{r}. Without loss of generality, we assume $n_{i}>1$ since cycles of length 1 are just the identity. The order of σ is

$$
l c m\left[n_{1}, \ldots, n_{r}\right] .
$$

Thus

$$
\operatorname{lcm}\left[n_{1}, \ldots, n_{r}\right]\left|3 \Longrightarrow n_{i}\right| 3 \Longrightarrow n_{i}=3
$$

Thus σ is product of disjoint cycles of length 3 .
(ii) If $a \in \operatorname{Ker} f$ we have

$$
\sigma_{a}=\mathbf{1} \Longleftrightarrow \sigma_{a}(g)=g \Longleftrightarrow a g a^{-1}=g \Longleftrightarrow a g=g a
$$

for all $g \in G$. Thus $a \in Z(G)$ by definition.
(iii) Let $\gamma=(123)$. We know $\gamma^{3}=\epsilon$. We set

$$
f_{\gamma}: S_{n} \rightarrow S_{n}, \quad f_{\gamma}(g)=\gamma g \gamma^{-1}
$$

Thus f_{γ} is an inner automorphism. We have seen in class that the composition of inner automorphisms is an inner automorphism corresponding to the composition in S_{n}. That is

$$
f_{\gamma} \circ f_{\gamma} \circ f_{\gamma}=f_{\gamma^{3}}=f_{\epsilon}=\mathbf{1} .
$$

Thus f_{γ} has order dividing 3 in the group $\operatorname{Aut}\left(S_{n}\right)$ (the group law is composition.)
We claim f_{γ} cannot have order 1 , so the order must be 3 . If f_{γ} had order 1 , then $f_{\gamma}=\mathbf{1}$. However for $g=(12)$ we have

$$
f_{\gamma}(g)=\mu g \mu^{-1}=(123)(12)(132)=(23) \neq \tau .
$$

This is not the only possible example.

Extra credit.

Find all subgroups of $(\mathbb{Z},+)$.
Solution: This imitates the proof that determined all subgroups of the cyclic group C_{n}. The difference is that we are now considering an infinite cyclic group.

Let H be a subgroup of $\mathbb{Z} . H=\{0\}$ is a possible answer. Otherwise, let $H \neq\{0\}$. Let

$$
X=\{d>0, d \in H .\}
$$

We have $X \neq \emptyset$. Indeed, if $d \in H$ is any nonzero element, then either $d>0$ or else $-d>0$ and $-d \in H$ as well. Thus either d or $-d$ are in X, so X is not empty.

Let d be the smallest element of X. We claim that

$$
H=d \mathbb{Z}=\{n \in \mathbb{Z}: n=d k, \quad k \in \mathbb{Z}\} .
$$

Indeed, since $d \in X$ we have $d \in H$ hence $d k \in H$ for all $k \in \mathbb{Z}$ since H is closed under addition (accounting for $k>0$) and inverses (to account for $k<0$). Thus

$$
d \mathbb{Z} \subset H
$$

For the opposite inclusion, let $a \in H$ and write

$$
a=d k+r
$$

where $0 \leq r<d$. We have

$$
r=a-d k \in H
$$

since $a \in H$ and $-d k \in H$, and H is closed under addition. But if $r>0$, then $r \in H$ and $0<r<d$ show $r \in X$, contradicting minimality of d in X. Thus $r=0$ so $a=d k$. Thus

$$
H=d \mathbb{Z}
$$

is established by double inclusion.

