
Math 100A - Fall 2019 - Midterm II

Problem 1.

Let G denote the cyclic group of order 20, and let g be a generator.

(i) Write down, in terms of g, all other generators of G.

(ii) List all automorphisms f : G→ G.

(iii) List all subgroups of G.

(iv) List all elements of G of order 4.

Solution:

(i) We showed in class that all generators of G are of the form gk with gcd(k, 20) = 1 and

0 ≤ k < 20. In our case, these are

g, g3, g7, g9, g11, g13, g17, g19.

(ii) There are exactly 8 automorphisms of G, corresponding to mapping g to one of the above

generators. We obtain the following automorphisms

f1(x) = x, f3(x) = x3, f7(x) = x7, f9(x) = x9,

f11(x) = x11, f13(x) = x13, f17(x) = x17, f19(x) = x19.

(iii) For each divisor k of 20 we have a unique subgroup of order k generated by g
20
k . We obtain

6 subgroups

H1 = 〈g20〉 = {1}, H2 = 〈g10〉 H4 = 〈g5〉, H5 = 〈g4〉, H10 = 〈g2〉, H20 = 〈g〉.

(iv) The generator g has order 20 by hypothesis. Let gk be an element of order 4 with 0 ≤ k < 20.

By a theorem in class,

o(gk) =
20

gcd(k, 20)
= 4 ⇐⇒ gcd(k, 20) = 5.

This yields the values k = 5, k = 15 so the only elements of order 4 are g5, g15.



Problem 2.

Let f : G → H be a group homomorphism, and let K = Ker f = {g : f(g) = 1}. We have seen

in class that K is a subgroup.

(i) Show that K is a subgroup of G.

(ii) Prove that if g ∈ G then gKg−1 ⊂ K.

(iii) Conclude that K is a normal subgroup of G.

(iv) Let G be the group of 2 × 2 invertible matrices with real entries. Give an example of a

normal H subgroup of G, H 6= {1} and H 6= G.

Solution:

(i) Let x, y ∈ K. We show xy−1 ∈ K. This proves K is a subgroup.

Since x, y ∈ K, we have

f(x) = 1, f(y) = 1.

By the properties of homomorphisms we have

f(xy−1) = f(x)f(y−1) = f(x)f(y)−1 = 1 · 1−1 = 1.

This shows that xy−1 ∈ K, as needed.

(ii) We show gKg−1 ⊂ K. Let

x ∈ gKg−1 =⇒ x = gkg−1 for some k ∈ K.

Then f(k) = 1. We compute

f(x) = f(gkg−1) = f(g)f(k)f(g−1) = f(g)f(k)f(g)−1 = f(g)f(g)−1 = 1.

Thus x ∈ K, completing the proof.

(iii) Since g is arbitrary, we can replace g by g−1 in part (ii) thus obtaining

g−1Kg ⊂ K.

Multiplying to the left by g and the right by g−1 we obtain

K = g(g−1Kg)g−1 ⊂ gKg−1.

In part (ii) we showed the opposite inclusion. Therefore gKg−1 = K for all g ∈ G, so K is

normal.

(iv) Let G′ = R \ {0}. This is a group under multiplication. Let

f : G→ G′, A 7→ detA.

This is a homomorphism as shown in class

f(AB) = det(AB) = detA · detB = f(A)f(B).

The kernel of H = Ker f is the group of 2 × 2 matrices with determinant 1. This group

was denoted by SL2(R). Clearly H 6= {1} and H 6= G. By part (iii), H is normal.



Problem 3.

Let G = 〈g〉 and H = 〈h〉 be cyclic groups of orders m and n.

(i) If gcd(m,n) = 1, show that (g, h) ∈ G×H is an element of order mn in G×H. Conclude

that G×H is also cyclic.

(ii) If gcd(m,n) = d 6= 1 show that G×H is not cyclic.

Solution:

(i) As shown in class, for a cyclic group we have |G| = o(g). Thus o(g) = m. Similarly

o(h) = n. In particular

gm = 1, hn = 1.

Consequently,

gmn = (gm)n = 1n = 1

hmn = (hn)m = 1.

Therefore

(g, h)mn = (gmn, hmn) = (1, 1).

Note that the pair (1, 1) serves as identity in G×H. In particular

o((g, h))|mn.

Conversely, we show that

mn|o((g, h))

proving therefore that o((g, h)) = mn.

Indeed, let (g, h) have order N . Then

(g, h)N = (1, 1) =⇒ (gN , hN ) = (1, 1) =⇒ gN = 1, hN = 1.

Since

gN = 1 =⇒ o(g)|N =⇒ m|N

and similarly

hN = 1 =⇒ o(h)|N =⇒ n|N.

Since gcd(m,n) = 1 it follows mn|N as claimed.

We have shown that (g, h) has order mn. Thus 〈(g, h)〉 is a subgroup of G × H of

cardinality o((g, h)) = mn. But G×H also has mn elements. Thus we must have equality

G×H = 〈(g, h)〉,

also proving G×H is cyclic.



(ii) If d = gcd(m,n) 6= 1, we claim G × H has no element of order mn so in particular it

cannot be cyclic. (For a cyclic group, the generator has order the size of the group, namely

mn = |G×H| in our case.)

Indeed, if x ∈ G×H we claim

x
mn
d = (1, 1)

so that o(x) ≤ mn
d < mn. To this end, write x = (a, b) where a ∈ G and b ∈ H. Write

a = gk, b = h`.

Thus

a
mn
d = g

kmn
d = (gm)

n
d
·k = 1.

Here, we used that n/d is an integer and gm = 1. Similarly

b
mn
d = 1.

Thus

x
mn
d = (a

mn
d , b

mn
d ) = (1, 1).



Problem 4.

(i) Show that if σ ∈ Sn satisfies σ3 = ε, then σ is a product of disjoint cycles of length 3.

(ii) Let G be a group. For each a ∈ G, let

σa : G→ G, σa(g) = aga−1

be the associated inner automorphism. Let

f : G→ Inn(G), a 7→ σa.

We have seen in class that f is a homomorphism. Show that the kernel of f equals the

center Z(G)

(iii) For each n ≥ 3, show that Aut(Sn) contains an element of order exactly 3.

Solution:

(i) Since σ3 = ε, if follows that the order of σ divides 3. Write σ as product of disjoint cycles

of lengths n1, . . . , nr. Without loss of generality, we assume ni > 1 since cycles of length 1

are just the identity. The order of σ is

lcm[n1, . . . , nr].

Thus

lcm[n1, . . . , nr]|3 =⇒ ni|3 =⇒ ni = 3.

Thus σ is product of disjoint cycles of length 3.

(ii) If a ∈ Ker f we have

σa = 1 ⇐⇒ σa(g) = g ⇐⇒ aga−1 = g ⇐⇒ ag = ga

for all g ∈ G. Thus a ∈ Z(G) by definition.

(iii) Let γ = (1 2 3). We know γ3 = ε. We set

fγ : Sn → Sn, fγ(g) = γgγ−1.

Thus fγ is an inner automorphism. We have seen in class that the composition of inner

automorphisms is an inner automorphism corresponding to the composition in Sn. That is

fγ ◦ fγ ◦ fγ = fγ3 = fε = 1.

Thus fγ has order dividing 3 in the group Aut(Sn) (the group law is composition.)

We claim fγ cannot have order 1, so the order must be 3. If fγ had order 1, then fγ = 1.

However for g = (12) we have

fγ(g) = µgµ−1 = (123)(12)(132) = (23) 6= τ.

This is not the only possible example.



Extra credit.

Find all subgroups of (Z,+).

Solution:This imitates the proof that determined all subgroups of the cyclic group Cn. The

difference is that we are now considering an infinite cyclic group.

Let H be a subgroup of Z. H = {0} is a possible answer. Otherwise, let H 6= {0}. Let

X = {d > 0, d ∈ H.}

We have X 6= ∅. Indeed, if d ∈ H is any nonzero element, then either d > 0 or else −d > 0 and

−d ∈ H as well. Thus either d or −d are in X, so X is not empty.

Let d be the smallest element of X. We claim that

H = dZ = {n ∈ Z : n = dk, k ∈ Z}.

Indeed, since d ∈ X we have d ∈ H hence dk ∈ H for all k ∈ Z since H is closed under addition

(accounting for k > 0) and inverses (to account for k < 0). Thus

dZ ⊂ H.

For the opposite inclusion, let a ∈ H and write

a = dk + r

where 0 ≤ r < d. We have

r = a− dk ∈ H
since a ∈ H and −dk ∈ H, and H is closed under addition. But if r > 0, then r ∈ H and 0 < r < d

show r ∈ X, contradicting minimality of d in X. Thus r = 0 so a = dk. Thus

H = dZ

is established by double inclusion.


