Midterm I Solutions

Problem 1.

(i) Find the inverse of 11 in \mathbb{Z}_{37}.
(ii) Show that

$$
a^{40} \equiv 1 \quad \bmod 451
$$

whenever $\operatorname{gcd}(a, 451)=1$.

Solution:

(i) Let x be the inverse of 11 in \mathbb{Z}_{37}. By definition

$$
11 x \equiv 1 \quad \bmod 37 \Longrightarrow 11 x=1+37 y
$$

for some integer y. We obtain

$$
11 x+37(-y)=1 .
$$

We find a solution of this congruence by the division algorithm. Indeed,

$$
\begin{gathered}
37=11 \cdot 3+4 \\
11=4 \cdot 2+3 \\
4=3 \cdot 1+1 .
\end{gathered}
$$

In reverse, we have

$$
1=4-3 \cdot 1=4-(11-4 \cdot 2)=4 \cdot 3-11 \cdot 1=(37-11 \cdot 3) \cdot 3-11 \cdot 1=37 \cdot 3-11 \cdot 10 .
$$

We conclude that a solution is

$$
x=-10,-y=3 .
$$

Thus, the inverse of 11 in \mathbb{Z}_{37} equals

$$
-10 \bmod 37 \equiv 27 \bmod 37 .
$$

(ii) We have $451=11 \cdot 41$. Thus $\operatorname{gcd}(a, 451)=1 \Longrightarrow \operatorname{gcd}(a, 11)=1$ and $\operatorname{gcd}(a, 41)=1$. Applying Fermat's theorem for the primes $p=11$ and $p=41$ we have

$$
\begin{gathered}
a^{10} \equiv 1 \quad \bmod 11 \Longrightarrow a^{40} \equiv 1 \quad \bmod 11 \\
a^{40} \equiv 1 \quad \bmod 41 .
\end{gathered}
$$

Thus $a^{40}-1$ is divisible by both 11 and 41, hence by their product $11 \cdot 41$, since $\operatorname{gcd}(11,41)=$ 1. This implies

$$
a^{40} \equiv 1 \quad \bmod 451 .
$$

Problem 2.

Consider the permutations

$$
\sigma=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 2 & 3 & 6 & 1
\end{array}\right), \quad \tau=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 3 & 1 & 4 & 5 & 2
\end{array}\right) .
$$

(i) Find the permutation χ such that

$$
\sigma \chi=\tau
$$

(ii) Determine the parity of σ and τ.
(iii) Show that there are no permutations μ such that $\sigma^{5}=\mu^{2} \tau$.

Solution:

(i) We have

$$
\sigma \chi=\tau \Longrightarrow \sigma^{-1} \sigma \chi=\sigma^{-1} \tau \Longrightarrow \chi=\sigma^{-1} \tau
$$

We compute

$$
\sigma^{-1}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 3 & 4 & 2 & 1 & 5
\end{array}\right)
$$

and therefore

$$
\chi=\sigma^{-1} \tau=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 3 & 4 & 2 & 1 & 5
\end{array}\right)\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 3 & 1 & 4 & 5 & 2
\end{array}\right)=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 6 & 2 & 1 & 3
\end{array}\right)
$$

(ii) We first write σ as product of cycles

$$
\sigma=(156)(243)
$$

From here, using that

$$
(a b c)=(a b)(b c)
$$

we conclude

$$
\sigma=(15)(56)(24)(43) .
$$

Since 4 transpositions are used, it follows that σ is an even permutation. We note that

$$
\tau=\left(\begin{array}{lll}
1 & 6 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 6
\end{array}\right)\left(\begin{array}{ll}
6 & 2
\end{array}\right)\left(\begin{array}{l}
2
\end{array}\right) .
$$

Since 3 transpositions are used, τ is an odd permutation.
(iii) We have two cases:

- if μ is even, then σ^{5} is even being product of even permutations, while $\mu^{2} \tau$ is odd being product of two even and one odd permutation.
- if μ is odd, then σ^{5} is even, while $\mu^{2} \tau$ is odd being product of three odd permutations.

In both cases $\sigma^{5} \neq \mu^{2} \tau$ since the parities are different.

Problem 3.

(i) Consider the permutation

$$
\sigma=\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
7 & 9 & 10 & 1 & 8 & 5 & 3 & 6 & 2 & 4
\end{array}\right) .
$$

Write σ as product of three disjoint cycles $\gamma_{1}, \gamma_{2}, \gamma_{3}$.
(ii) Compute $\gamma_{1}^{60}, \gamma_{2}^{60}, \gamma_{3}^{60}$.
(iii) Using (i) and (ii), compute σ^{60}.

Solution:

(i) We have

$$
\sigma=(173104)(29)(586) .
$$

We write

$$
\gamma_{1}=\left(\begin{array}{ll}
1 & 7104
\end{array}\right), \gamma_{2}=(29), \gamma_{3}=\left(\begin{array}{ll}
5 & 6
\end{array}\right) .
$$

(ii) We note that for a cycle of length ℓ, its $\ell^{\text {th }}$ power equals the identity; this is because each member is sent to the one following it successively ℓ times, so at the end it will cycle through to the starting point.

In particular,

$$
\begin{aligned}
& \gamma_{1}^{5}=\epsilon \Longrightarrow \gamma_{1}^{60}=\left(\gamma_{1}^{5}\right)^{12}=\epsilon \\
& \gamma_{2}^{2}=\epsilon \Longrightarrow \gamma_{2}^{60}=\left(\gamma_{2}^{2}\right)^{30}=\epsilon \\
& \gamma_{3}^{3}=\epsilon \Longrightarrow \gamma_{3}^{60}=\left(\gamma_{3}^{3}\right)^{30}=\epsilon .
\end{aligned}
$$

(iii) We know that disjoint cycles commute so

$$
\gamma_{i} \gamma_{j}=\gamma_{j} \gamma_{i} .
$$

We have

$$
\sigma^{60}=\left(\gamma_{1} \gamma_{2} \gamma_{3}\right)^{60}=\gamma_{1} \gamma_{2} \gamma_{3} \cdots \gamma_{1} \gamma_{2} \gamma_{3}=\gamma_{1}^{60} \gamma_{2}^{60} \gamma_{3}^{60}
$$

Here we used that the γ^{\prime} s commute so the order does not matter: this way we moved all the γ_{1}^{\prime} s to the left, all the γ_{2} 's to the middle, and the γ_{3} 's at the end.

Using (ii), we find

$$
\sigma^{60}=\gamma_{1}^{60} \gamma_{2}^{60} \gamma_{3}^{60}=\epsilon \cdot \epsilon \cdot \epsilon=\epsilon
$$

Problem 4.

(i) If χ and τ are two permutations in S_{n}, show that the inverse of the permutation $\chi \tau$ is the permutation $\chi^{-1} \tau^{-1}$. In symbols,

$$
(\chi \tau)^{-1}=\tau^{-1} \chi^{-1} .
$$

(ii) On the set S_{n} of permutations define $\sigma_{1} \sim \sigma_{2}$ if there exists a permutation τ such that

$$
\sigma_{1}=\tau \sigma_{2} \tau^{-1}
$$

Show that \sim defines an equivalence relation on the set S_{n} of permutations.

Solution:

(i) Write $\nu=\chi \tau$ and $\mu=\tau^{-1} \chi^{-1}$. To show that μ is the inverse of the permutation ν we compute

$$
\mu \nu=\nu \mu=\epsilon .
$$

Indeed,

$$
\mu \nu=\tau^{-1} \chi^{-1} \chi \tau=\tau^{-1} \epsilon \tau=\tau^{-1} \tau=\epsilon
$$

and similarly

$$
\nu \mu=\chi \tau \tau^{-1} \chi^{-1}=\chi \epsilon \chi^{-1}=\chi \chi^{-1}=\epsilon .
$$

(ii) We show that \sim is reflexive, symmetric and transitive.

- Reflexive: we show $\sigma \sim \sigma$. Indeed, letting $\tau=\epsilon$, we have

$$
\sigma=\tau \sigma \tau^{-1} \Longrightarrow \sigma \sim \sigma .
$$

- Symmetric: we show $\sigma_{1} \sim \sigma_{2} \Longrightarrow \sigma_{2} \sim \sigma_{1}$. Indeed,

$$
\sigma_{1}=\tau \sigma_{2} \tau^{-1}
$$

for some τ. We solve

$$
\sigma_{2}=\tau^{-1} \sigma_{1} \tau
$$

Let $\mu=\tau^{-1}$ so that $\mu^{-1}=\tau$. Then

$$
\sigma_{2}=\tau^{-1} \sigma_{1} \tau=\mu \sigma_{1} \mu^{-1} \Longrightarrow \sigma_{2} \sim \sigma_{1}
$$

- Transitive: we show

$$
\sigma_{1} \sim \sigma_{2}, \sigma_{2} \sim \sigma_{3} \Longrightarrow \sigma_{1} \sim \sigma_{3} .
$$

Indeed, by definition

$$
\sigma_{1}=\tau \sigma_{2} \tau^{-1}
$$

for some τ. Similarly,

$$
\sigma_{2}=\chi \sigma_{3} \chi^{-1}
$$

for some χ. Then

$$
\sigma_{1}=\tau \sigma_{2} \tau^{-1}=\tau \chi \sigma_{3} \chi^{-1} \tau^{-1}=(\tau \chi) \sigma_{3}(\tau \chi)^{-1}
$$

where part (i) was used in the last line. Setting $\mu=\tau \chi$, we therefore have

$$
\sigma_{1}=\mu \sigma_{3} \mu^{-1}
$$

showing $\sigma_{1} \sim \sigma_{3}$.

Problem 5.

(i) Let $p>2$ be a prime. Prove Wilson's theorem stating that

$$
(p-1)!\equiv-1 \quad \bmod p
$$

(ii) Let n be a positive integer, and let π denote the product of all units in \mathbb{Z}_{n}. Show that

$$
\pi^{2} \equiv 1 \quad \bmod n
$$

Solution:

(i) Since p is a prime, every $x \in\{1,2, \ldots, p-1\}$ must be invertible in \mathbb{Z}_{p}. We write x^{-1} for the inverse. In the product

$$
(p-1)!=1 \cdot 2 \cdot \ldots \cdot(p-1)
$$

the elements come in pairs $\left(x, x^{-1}\right)$. The elements in each pair multiply to 1 in \mathbb{Z}_{p}. If $x \neq x^{-1}$ in \mathbb{Z}_{p}, each pair contributes 1 to $(p-1)$!. It can happen however that $x=x^{-1}$ in \mathbb{Z}_{p}. This means

$$
\begin{gathered}
x \equiv x^{-1} \quad \bmod p \Longrightarrow x^{2} \equiv 1 \quad \bmod p \Longrightarrow p \mid x^{2}-1=(x-1)(x+1) \\
\Longrightarrow p \mid x-1 \text { or } p \mid x+1 \Longrightarrow x \equiv \pm 1 \bmod p
\end{gathered}
$$

Therefore the only elements which are unaccounted for in the product ($p-1$)! are 1 and $p-1$, which together multiply to $-1 \bmod p$. Thus

$$
(p-1)!\equiv-1 \quad \bmod p
$$

(ii) The reasoning is similar. Let u_{1}, \ldots, u_{k} be the invertible elements in \mathbb{Z}_{n} so that

$$
\pi=u_{1} \cdot \ldots \cdot u_{k}
$$

In this product, we pair up each x with its inverse x^{-1}. The elements in each pair multiply to 1 in \mathbb{Z}_{n}. There will however be units x which equal their inverse x^{-1}. Say these units are v_{1}, \ldots, v_{ℓ}. Then

$$
\pi=v_{1} \cdots v_{\ell}
$$

However,

$$
x=x^{-1} \text { in } \mathbb{Z}_{n} \Longrightarrow x^{2}=1 \text { in } \mathbb{Z}_{n}
$$

so in particular $v_{i}^{2}=1$ in \mathbb{Z}_{n}. Then

$$
\pi^{2}=\left(v_{1} \cdots v_{\ell}\right)^{2}=v_{1}^{2} \cdots v_{\ell}^{2}=1
$$

in \mathbb{Z}_{n}.

Extra credit.

Show that there are infinitely many primes p which are of the form $4 k+1$.
Hint: Consider $A=\left(2 p_{1} \cdots p_{n}\right)^{2}+1$.
Solution: Assume for a contradiction that there are only finitely many primes p_{1}, \ldots, p_{n} of the form $4 k+1$. Set

$$
A=\left(2 p_{1} \cdots p_{n}\right)^{2}+1 .
$$

Note that $A>1$. Let q be a prime divisor of A. Then

$$
\left(2 p_{1} \cdots p_{n}\right)^{2}+1 \equiv 0 \quad \bmod q
$$

and therefore the equation

$$
x^{2}+1 \equiv 0 \quad \bmod q
$$

has the solution $x=2 p_{1} \ldots p_{n}$. By a result in class, this shows that $q=2$ or $q \equiv 1 \bmod 4$. However, A is odd, so q must be odd as well. Hence $q \neq 2$. Thus $q \equiv 1 \bmod 4$. Therefore, q is a prime of the form $4 k+1$, so it must be one of the primes on our list p_{1}, \ldots, p_{n}. Thus $q=p_{i}$ for some i. We obtain

$$
q\left|A \Longrightarrow p_{i}\right| A \Longrightarrow A \equiv 0 \quad \bmod p_{i} .
$$

This is however impossible since

$$
A=\left(2 p_{1} \cdots p_{n}\right)^{2}+1 \equiv 1 \quad \bmod p_{i} \Longrightarrow A \not \equiv 0 \quad \bmod p_{i} .
$$

Therefore, our assumption was wrong and there must be infinitely many primes of the form $4 k+1$.

