Midterm I Solutions

Problem 1.

(i) Find the inverse of 11 in Zsy.
(ii) Show that
a®*=1 mod 451

whenever ged(a,451) = 1.
Solution:
(i) Let = be the inverse of 11 in Zs7. By definition
llz=1 mod 37 = 1llxz =1+ 37y
for some integer y. We obtain
11z +37(—y) = 1.

We find a solution of this congruence by the division algorithm. Indeed,

37=11-3+4+4
11=4-243
4=3-1+1.

In reverse, we have
1=4-3-1=4—-(11-4-2)=4-3-11-1=(37-11-3)-3—-11-1=37-3—11-10.

We conclude that a solution s

z=-10,—y = 3.
Thus, the inverse of 11 in Zs7 equals

—10 mod 37 =27 mod 37.
(ii) We have 451 = 11 - 41. Thus ged(a,451) =1 = ged(a,11) = 1 and ged(a,41) = 1.
Applying Fermat’s theorem for the primes p = 11 and p = 41 we have
al®=1 mod1l = a*®=1 mod 11
a®®=1 mod 41.

Thus a*® —1 is divisible by both 11 and 41, hence by their product 11-41, since ged(11,41) =
1. This implies
a®®*=1 mod 451.



Problem 2.

Consider the permutations

/123456 (12
=\5 4236 1) " \6 3

(i) Find the permutation x such that

3 4 5 6
1 4 5 2)°
oOX=T.

(ii) Determine the parity of o and .

iii) Show that there are no permutations u such that ¢® = u27.
(iif) p 0 I

Solution:

(i) We have

oX =T = U_IUX —olr = X = o lr.

1 (1 2 3 45 6
7 634215
and therefore

1 (12345 6)(12 5 6) (1 2
X= “\6 34215/ 6 3 5 2) (5 4

(ii) We first write o as product of cycles
o= (156)(243).

We compute

3 3 4
1 6 2

| A

4
4

w
N———

From here, using that
(abc) = (ab)(bc)
we conclude
o=(15)(56)(24)(43).
Since 4 transpositions are used, it follows that o is an even permutation. We note that

T=(1623)=(16)(62)(23).

Since 3 transpositions are used, T is an odd permutation.
(iii) We have two cases:
— if ju is even, then o is even being product of even permutations, while >t is odd being
product of two even and one odd permutation.
— if u is odd, then o® is even, while u*7 is odd being product of three odd permutations.

In both cases 0® # >t since the parities are different.



Problem 3.

(i) Consider the permutation

(12 3 456789 10
9 \7 910185 36 2 4)°

Write o as product of three disjoint cycles 71, 2, 3.

(ii) Compute ’V?O, 7307 ,Ygo_

(iii) Using (i) and (ii), compute 0.
Solution:
(i) We have
c=(173104)(29)(586).
We write

v =(173104), 2=(29), v3=(586).

(ii) We note that for a cycle of length £, its {"* power equals the identity; this is because each
member is sent to the one following it successively £ times, so at the end it will cycle through
to the starting point.

In particular,
H=e= " =0
== 15 =" =c
Rme = AP =(hP=c
(iii) We know that disjoint cycles commute so
Vi =

We have
6060 . 60

0% = (m7273)% = 117273 - - M2 = 180 -
Here we used that the +'s commute so the order does not matter: this way we moved all the

V18 to the left, all the v2’s to the middle, and the v3’s at the end.

Using (i1), we find
0-60 = ,Y?O,Ygo,ygo = €-€-€=¢€.



Problem 4.

(i) If x and 7 are two permutations in S,,, show that the inverse of the permutation x7 is the

1

permutation y~'7~!. In symbols,

(xr) =

(ii) On the set S,, of permutations define o1 ~ oy if there exists a permutation 7 such that
o1 = TooT L

Show that ~ defines an equivalence relation on the set S, of permutations.

Solution:

(i) Write v = x7 and p = 7 'x~ 1. To show that p is the inverse of the permutation v we
compute
PV =V = €.

Indeed,

N T71X71X7' =rler=r"lr=¢

and similarly
vp=xrr X =xex T =T =e
(ii) We show that ~ is reflexive, symmetric and transitive.

— Reflexive: we show o ~ o. Indeed, letting T = €, we have

1

' — s~o0.

O=T0T
— Symmetric: we show o1 ~ 09 = 09 ~ 01. Indeed,
_ —1
01 =TO092T

for some 7. We solve

oy =1 loyT.

Let p=7"" so that u=' = 7. Then
o9 = T_10'1T = ,ualu_l = 09 ~ O0].
— Transitive: we show
o1~ 03, 09 ~ 03 —> 01 ~ 03.
Indeed, by definition
o1 =TT !

for some 7. Similarly,

oy = Xo3X "

for some x. Then

o1 =709 " = Tx03x T = (TX)os(Tx) !



where part (i) was used in the last line. Setting p = 7x, we therefore have

o1 = posp

showing o1 ~ o3.



Problem 5.
(i) Let p > 2 be a prime. Prove Wilson’s theorem stating that
(p—1)!=-1 mod p.
(ii) Let n be a positive integer, and let m denote the product of all units in Z,. Show that
72=1 mod n.

Solution:

(i) Since p is a prime, every x € {1,2,...,p — 1} must be invertible in Z,. We write x=* for

the inverse. In the product

(p—1)!=1-2-...-(p—1)

the elements come in pairs (xz,x~1). The elements in each pair multiply to 1 in L. If

) Ly, each pair contributes 1 to (p — 1)!. It can happen however that v = x~
L. This means

2

r=z"' modp = 2°=1 modp = pl2® —1=(z—1)(z+1)

= plr—1orplx+1 = z==+1 mod p.

Therefore the only elements which are unaccounted for in the product (p — 1)! are 1 and

p — 1, which together multiply to —1 mod p. Thus
(p—1!'=-1 mod p.
(ii) The reasoning is similar. Let uq,...,uy be the invertible elements in Z, so that

T™T=Uuy- ... Ug.
In this product, we pair up each x with its inverse z 1.
to 1 in Zy,,. There will however be units x which equal their inverse z 1.
are vi,...,vs. Then
T =71"""Vyp.
Howewver,
=z 'VinZ, = 2°=1inZ,
so in particular v? = 1 in Z,. Then

2= (vy-v)2 =002 =1

n Ly,.

The elements in each pair multiply

Say these units



Extra credit.

Show that there are infinitely many primes p which are of the form 4k + 1.

Hint: Consider A = (2py---p,)? + 1.

Solution: Assume for a contradiction that there are only finitely many primes p1,...,pn of the
form 4k 4+ 1. Set

A= (2p1---pn)’ + 1.
Note that A > 1. Let q be a prime divisor of A. Then
(2p1--pp)?+1=0 modgq
and therefore the equation
2241=0 modgq
has the solution x = 2py...p,. By a result in class, this shows that ¢ = 2 or ¢ = 1 mod 4.
However, A is odd, so g must be odd as well. Hence q # 2. Thus ¢ =1 mod 4. Therefore, q is a

prime of the form 4k + 1, so it must be one of the primes on our list p1,...,pn. Thus ¢ = p; for
some i. We obtain

gA = pilA = A=0 mod p;.
This is however impossible since
A=2p1---pn)?+1=1 modp;, = A#0 mod p;.

Therefore, our assumption was wrong and there must be infinitely many primes of the form 4k+1.



