
Midterm I Solutions

Problem 1.

(i) Find the inverse of 11 in Z37.

(ii) Show that

a40 ≡ 1 mod 451

whenever gcd(a, 451) = 1.

Solution:

(i) Let x be the inverse of 11 in Z37. By definition

11x ≡ 1 mod 37 =⇒ 11x = 1 + 37y

for some integer y. We obtain

11x+ 37(−y) = 1.

We find a solution of this congruence by the division algorithm. Indeed,

37 = 11 · 3 + 4

11 = 4 · 2 + 3

4 = 3 · 1 + 1.

In reverse, we have

1 = 4− 3 · 1 = 4− (11− 4 · 2) = 4 · 3− 11 · 1 = (37− 11 · 3) · 3− 11 · 1 = 37 · 3− 11 · 10.

We conclude that a solution is

x = −10,−y = 3.

Thus, the inverse of 11 in Z37 equals

−10 mod 37 ≡ 27 mod 37.

(ii) We have 451 = 11 · 41. Thus gcd(a, 451) = 1 =⇒ gcd(a, 11) = 1 and gcd(a, 41) = 1.

Applying Fermat’s theorem for the primes p = 11 and p = 41 we have

a10 ≡ 1 mod 11 =⇒ a40 ≡ 1 mod 11

a40 ≡ 1 mod 41.

Thus a40−1 is divisible by both 11 and 41, hence by their product 11 ·41, since gcd(11, 41) =

1. This implies

a40 ≡ 1 mod 451.
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Problem 2.

Consider the permutations

σ =

(
1 2 3 4 5 6
5 4 2 3 6 1

)
, τ =

(
1 2 3 4 5 6
6 3 1 4 5 2

)
.

(i) Find the permutation χ such that

σχ = τ.

(ii) Determine the parity of σ and τ .

(iii) Show that there are no permutations µ such that σ5 = µ2τ .

Solution:

(i) We have

σχ = τ =⇒ σ−1σχ = σ−1τ =⇒ χ = σ−1τ.

We compute

σ−1 =

(
1 2 3 4 5 6
6 3 4 2 1 5

)
and therefore

χ = σ−1τ =

(
1 2 3 4 5 6
6 3 4 2 1 5

)(
1 2 3 4 5 6
6 3 1 4 5 2

)
=

(
1 2 3 4 5 6
5 4 6 2 1 3

)
(ii) We first write σ as product of cycles

σ = (1 5 6)(2 4 3).

From here, using that

(a b c) = (a b)(b c)

we conclude

σ = (1 5)(5 6)(2 4)(4 3).

Since 4 transpositions are used, it follows that σ is an even permutation. We note that

τ = (1 6 2 3) = (1 6)(6 2)(2 3).

Since 3 transpositions are used, τ is an odd permutation.

(iii) We have two cases:

– if µ is even, then σ5 is even being product of even permutations, while µ2τ is odd being

product of two even and one odd permutation.

– if µ is odd, then σ5 is even, while µ2τ is odd being product of three odd permutations.

In both cases σ5 6= µ2τ since the parities are different.



Problem 3.

(i) Consider the permutation

σ =

(
1 2 3 4 5 6 7 8 9 10
7 9 10 1 8 5 3 6 2 4

)
.

Write σ as product of three disjoint cycles γ1, γ2, γ3.

(ii) Compute γ601 , γ
60
2 , γ

60
3 .

(iii) Using (i) and (ii), compute σ60.

Solution:

(i) We have

σ = (1 7 3 10 4) (2 9)(5 8 6).

We write

γ1 = (1 7 3 10 4), γ2 = (2 9), γ3 = (5 8 6).

(ii) We note that for a cycle of length `, its `th power equals the identity; this is because each

member is sent to the one following it successively ` times, so at the end it will cycle through

to the starting point.

In particular,

γ51 = ε =⇒ γ601 = (γ51)12 = ε

γ22 = ε =⇒ γ602 = (γ22)30 = ε

γ33 = ε =⇒ γ603 = (γ33)30 = ε.

(iii) We know that disjoint cycles commute so

γiγj = γjγi.

We have

σ60 = (γ1γ2γ3)
60 = γ1γ2γ3 · · · γ1γ2γ3 = γ601 γ

60
2 γ

60
3 .

Here we used that the γ′s commute so the order does not matter: this way we moved all the

γ′1s to the left, all the γ2’s to the middle, and the γ3’s at the end.

Using (ii), we find

σ60 = γ601 γ
60
2 γ

60
3 = ε · ε · ε = ε.



Problem 4.

(i) If χ and τ are two permutations in Sn, show that the inverse of the permutation χτ is the

permutation χ−1τ−1. In symbols,

(χτ)−1 = τ−1χ−1.

(ii) On the set Sn of permutations define σ1 ∼ σ2 if there exists a permutation τ such that

σ1 = τσ2τ
−1.

Show that ∼ defines an equivalence relation on the set Sn of permutations.

Solution:

(i) Write ν = χτ and µ = τ−1χ−1. To show that µ is the inverse of the permutation ν we

compute

µν = νµ = ε.

Indeed,

µν = τ−1χ−1χτ = τ−1ετ = τ−1τ = ε

and similarly

νµ = χττ−1χ−1 = χεχ−1 = χχ−1 = ε.

(ii) We show that ∼ is reflexive, symmetric and transitive.

– Reflexive: we show σ ∼ σ. Indeed, letting τ = ε, we have

σ = τστ−1 =⇒ σ ∼ σ.

– Symmetric: we show σ1 ∼ σ2 =⇒ σ2 ∼ σ1. Indeed,

σ1 = τσ2τ
−1

for some τ . We solve

σ2 = τ−1σ1τ.

Let µ = τ−1 so that µ−1 = τ . Then

σ2 = τ−1σ1τ = µσ1µ
−1 =⇒ σ2 ∼ σ1.

– Transitive: we show

σ1 ∼ σ2, σ2 ∼ σ3 =⇒ σ1 ∼ σ3.

Indeed, by definition

σ1 = τσ2τ
−1

for some τ . Similarly,

σ2 = χσ3χ
−1

for some χ. Then

σ1 = τσ2τ
−1 = τχσ3χ

−1τ−1 = (τχ)σ3(τχ)−1



where part (i) was used in the last line. Setting µ = τχ, we therefore have

σ1 = µσ3µ
−1

showing σ1 ∼ σ3.



Problem 5.

(i) Let p > 2 be a prime. Prove Wilson’s theorem stating that

(p− 1)! ≡ −1 mod p.

(ii) Let n be a positive integer, and let π denote the product of all units in Zn. Show that

π2 ≡ 1 mod n.

Solution:

(i) Since p is a prime, every x ∈ {1, 2, . . . , p − 1} must be invertible in Zp. We write x−1 for

the inverse. In the product

(p− 1)! = 1 · 2 · . . . · (p− 1)

the elements come in pairs (x, x−1). The elements in each pair multiply to 1 in Zp. If

x 6= x−1 in Zp, each pair contributes 1 to (p− 1)!. It can happen however that x = x−1 in

Zp. This means

x ≡ x−1 mod p =⇒ x2 ≡ 1 mod p =⇒ p|x2 − 1 = (x− 1)(x+ 1)

=⇒ p|x− 1 or p|x+ 1 =⇒ x ≡ ±1 mod p.

Therefore the only elements which are unaccounted for in the product (p − 1)! are 1 and

p− 1, which together multiply to −1 mod p. Thus

(p− 1)! ≡ −1 mod p.

(ii) The reasoning is similar. Let u1, . . . , uk be the invertible elements in Zn so that

π = u1 · . . . · uk.

In this product, we pair up each x with its inverse x−1. The elements in each pair multiply

to 1 in Zn. There will however be units x which equal their inverse x−1. Say these units

are v1, . . . , v`. Then

π = v1 · · · v`.
However,

x = x−1 in Zn =⇒ x2 = 1 in Zn

so in particular v2i = 1 in Zn. Then

π2 = (v1 · · · v`)2 = v21 · · · v2` = 1

in Zn.



Extra credit.

Show that there are infinitely many primes p which are of the form 4k + 1.

Hint: Consider A = (2p1 · · · pn)2 + 1.

Solution: Assume for a contradiction that there are only finitely many primes p1, . . . , pn of the

form 4k + 1. Set

A = (2p1 · · · pn)2 + 1.

Note that A > 1. Let q be a prime divisor of A. Then

(2p1 · · · pn)2 + 1 ≡ 0 mod q

and therefore the equation

x2 + 1 ≡ 0 mod q

has the solution x = 2p1 . . . pn. By a result in class, this shows that q = 2 or q ≡ 1 mod 4.

However, A is odd, so q must be odd as well. Hence q 6= 2. Thus q ≡ 1 mod 4. Therefore, q is a

prime of the form 4k + 1, so it must be one of the primes on our list p1, . . . , pn. Thus q = pi for

some i. We obtain

q|A =⇒ pi|A =⇒ A ≡ 0 mod pi.

This is however impossible since

A = (2p1 · · · pn)2 + 1 ≡ 1 mod pi =⇒ A 6≡ 0 mod pi.

Therefore, our assumption was wrong and there must be infinitely many primes of the form 4k+1.


