
MATH 100A Complete Lecture Notes
Brian Chao

Fall 2019

Lecture 9/26/2019 (Week 0 Thursday):

Group theory is about the symmetries of objects. Given an object X, we are
looking for a function X → X that is a bijection and preserves properties of X.
Thus, the “symmetries” of X is informally

Symm(X) = {f : X → X|f bijection}.

For example, given a straight-line segment graph 1− 2− 3− 4, its symmetries
are {id, flipping}. We can flip it so that it becomes 4− 3− 2− 1.

We observe that:
(1) IdX ∈ Symm(X).
(2) If f, g ∈ Symm(X), then f ◦ g ∈ Symm(X).
(3) If f ∈ Symm(X), then f−1 ∈ Symm(X).

Definition:

We say that (G, ·) is a group if the binary operation · : G × G → G
satisfies :
(a) ∃e ∈ G, such that ∀g ∈ G, g · e = e · g = g. (This is the neutral
element, or the identity element.)
(b) (associtivity of group operation) ∀g1, g2, g3 ∈ G, we have (g1 ·g2)·g3 =
g1 · (g2 · g3).
(c) ∀g ∈ G, ∃g′ ∈ G such that g · g′ = g′ · g = e.

Remark: The professor says that we will do a bunch of things focused on a
central purpose rather than just going topic by topic.
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Example:

Let X = {1, 2, ..., n}. Then,

Symm(X) = {f : X → X|f is a bijection}.

It is denoted by Sn, and it is called the symmetric group. Sn is a group
under composition. It is easy to verify the group properties. The cardi-
nality of Sn is n!.

For example, for the set {1, 2, 3}. We can map 1 to 3. What do we map 2
to? Well, we have only 2 choices now. Continuing this logic, we deduce that
|S3| = 3!.

Example:

Consider (Z,+). This a group with identity element 0. The “inverse” of
x is −x.

Example:

Is (Z, ·) a group? Well, no, because 0 has no inverse element. Another
reason is that 2x = 1 has no solutions in Z.

Example:

Consider (Q, ·). This isn’t a group because 0 has no inverse element.
However, (Q\{0}, ·) is a group.

Example:

GLn(R) = {a ∈Mn(R)|det(a) 6= 0}, the set of invertible n× n matrices
with real entries, is a group under matrix multiplication.

Recall: (Well-Ordering Principle) Any nonempty subset of nonnegative integers
A ⊂ Z+ has a minimal element.
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Theorem (Division Algorithm):

For every a ∈ Z and b ∈ Z+, ∃!(q, r) ∈ Z× Z, such that:

a = bq + r

with 0 ≤ r < b. This just means that we divide a by b.

Proof. We have to prove both uniqueness and existence. First let

A := {a− bk|k ∈ Z, a− bk ≥ 0} = (a+ bZ) ∪ Z≥0.

The intuition here is we are dividing a by subtracting k copies of b from it. The
reason for the minus sign in front of bk is just to make it easier to imagine.

If a ≥ 0, then a = a − b · 0 ∈ A. Now suppose a < 0. Then let k = −a.
This gives us a + b(−a) = a(1 − b). The sign of a is negative, and, since b is a
positive integer, (1− b) ≤ 0. Thus a(1− b) ≥ 0, and we conclude a(1− b) ∈ A.
So, in either case we know A is nonempty. By the well-ordering principle, let r
be the minimal element of A. In particular, r ∈ A. Thus r ≥ 0, and we get:

a− bq = r

for some q ∈ Z. We now show that r < b. Suppose to the contrary that r ≥ b.
Then r− b ≥ 0 and r− b = a− bq− b = a− b(q+ 1). This means r− b ∈ A and
r−b < r, which contradicts the minimality of r. This finishes the existence proof.

Now we show that (q, r) is unique. Suppose that (q1, r1) and (q2, r2) both
satisfy a = bqi + ri. We want to show that the two pairs are equal. We know
that bq1 + r1 = bq2 + r2 =⇒ b(q1 − q2) = r2 − r1. Without loss of generality,
assume q1 ≥ q2. Then r2 − r1 ≥ 0, furthermore 0 ≤ r2 − r1 ≤ r2 < b. Since
r2 − r1 is a multiple of b, it is only possible that r2 − r1 = 0, and thus q1 = q2.
�

Definition:

We say that a|b, or a divides b, if ∃k ∈ Z, such that b = ak.

Proposition:

If a|b and b|c, then a|c.
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Proposition:

If a|b1 and a|b2, then a|b1 ± b2.

Proposition:

If a|b, then a|bk, where k can be any integer.

Proposition:

If a|b and b 6= 0, then |a| ≤ |b|.

Definition:

A subgroup of a group (G, ·) is a subset H ⊂ G such that (H, ·) is a
group. We denote this with H ≤ G.

Example:

(Z+,+) is not a subgroup of (Z,+) because positive integers do not have
additive inverses in the positive integers.

Example:

Consider kZ = {ka|a ∈ Z}. Then (kZ,+) is a subgroup of (Z,+).

Theorem:

A subgroup of Z is of the form aZ for a ∈ Z.

Proof. Let H be a subgroup of Z. If H = {0}, then we are done. Indeed,
0Z = {0}. Now suppose that H has a nonzero element h ∈ H. We claim that
H has a positive element. Indeed, exactly one of h,−h ∈ H is positive. Thus
H ∩ Z+ 6= ∅.

By the well-ordering principle, H ∩Z+ has a minimal element, say a ∈ H ∩Z+.
We claim that H = aZ.
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We have to show that aZ ⊂ H and H ⊂ aZ.

Subclaim 1: For all k ∈ Z+, ak ∈ H. We will prove by induction. The base
case is a · 1 ∈ H. Assume that a · k ∈ H. Then a · (k + 1) = ak + a ∈ H,
since we assume that ak, a ∈ H. Thus, ak ∈ H for k ∈ Z+, and moreover
−ak = a(−k) ∈ H. We conclude aZ ⊂ H.

Now suppose h ∈ H. By the division algorithm, ∃!(q, r) integers such that
h = aq+ r, with 0 ≤ r < a. We want to show r = 0. We have r = h− aq. Since
aq ∈ H, we know −aq ∈ H, and finally h−aq = h+(−aq) ∈ H. Since r ∈ H and
r < a and a = min(H ∩ Z+), we must have r ≤ 0, else the existence of a r > 0
would contradict the minimality of a. Yet 0 ≤ r. Thus r = 0 =⇒ h = aq ∈ aZ,
establishing H ⊂ aZ. �

Recall: The greatest common divisor of a, b is denoted gcd(a, b). * We cannot
define gcd(0, 0), since gcd only outputs positive integers.

Proposition:

gcd(a, b) ≤ min{|a|, |b|} if either a 6= 0 or b 6= 0.
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Lecture 10/1/2019 (Week 1 Tuesday):

Definition:

Consider a, b ∈ Z, where at least one is nonzero, say b 6= 0. The greatest
common divisor of a, b is a number gcd(a, b) > 0 such that:
(1) gcd(a, b)|a and gcd(a, b)|b;
(2) gcd(a, b) is the biggest number with property (1).

Notation: Define:

aZ + bZ = {ax+ by|x, y ∈ Z} ⊂ Z.

Claim:

aZ + bZ is a subgroup of Z.

Proof. It suffices to prove that if α, β ∈ X := aZ + bZ, then then α + β ∈ X
and −α ∈ X and 0 ∈ X. This is because once we have shown that these hold,
then it is clear that we have closure under addition, as well as the identity and
inverse elements. Also integer addition is always associative, so we don’t need
to worry about that.

First, 0 ∈ X, because setting x = y = 0, ax + by = 0 ∈ X. Second, if
α = ax + by, then −α = a(−x) + b(−y) ∈ X. Third, if α = ax1 + by1 and
β = ax2 + by2. Then, α+ β = a(x1 + x2) + b(y1 + y2) ∈ X. �

Recall: All subgroups X ⊂ Z are of one of the following forms: X = {0}
or X = bZ, where b is the smallest positive element in X.

For aZ+bZ, we can choose x = 0 and y = 1 in ax+by to show that bZ ⊂ aZ+bZ,
and thus, aZ + bZ 6= {0}, since bZ contains a smallest positive element b.

Conclusion: aZ + bZ = dZ for d > 0.

Theorem:

d is the greatest common divisor of a, b. In particular, d ∈ dZ, thus,
d = ax+ by for some x, y ∈ Z.

Proof. We know that aZ + bZ = dZ for some d > 0, but we can’t say that
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d = gcd(a, b) yet. By setting x = 1 and y = 0 in ax+ by, we have a ∈ aZ + bZ.
Hence a ∈ dZ too, so d|a. Similarly, setting x = 0 and y = 1, we get that
b ∈ aZ + bZ, so that b ∈ dZ, and d|b. Thus d divides both a and b.

It remains to show that d is the greatest divisor. Notice that d = ax + by
for some x, y ∈ Z. Let d′ be a common divisor of a, b, so that d′|a and d′|b, so
that d′|(ax + by). In particular, d′|d as well, which implies d′ ≤ d. Thus this
finishes the proof. �

Example:

Since gcd(2, 5) = 1, we have 2Z+ 5Z = Z, so any integer may be written
as a sum of a multiple of 2 and a multiple of 5.

Corollary:

If c|a and c|b, then c| gcd(a, b).

Proof. Essentially the last proof, but with d′ replaced with c. �

Corollary:

gcd(a, b) = 1 if and only if 1 = ax + by for some x, y ∈ Z. In this case,
a, b are said to be coprime.

Proof. The forward direction of the proof is given by the theorem we just proved.
Now suppose that 1 = ax + by for some x, y ∈ Z. Write d = gcd(a, b). This
means that d|a and d|b, so it must divide ax+ by = 1. So, d|1, so d = ±1. But
we have defined the gcd to be a positive number, so d = 1. �

Corollary:

If a|bc and gcd(a, b) = 1, then a|c. ?

For example, 6|2 · 3, but gcd(6, 2) 6= 1, so won’t work.
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Proof. Write 1 = ax+by. Multiplying the equation by c, we have c = acx+bcy =
a(cx) + (bc)y, which is a sum of multple of a’s. Thus a|c. �

Prime Numbers
Definition:

p is prime if p > 1 and its only divisors are ±1,±p. In other words
d|p =⇒ d = ±1,±p.

Lemma:

Let p be a prime and n ∈ Z. Then either:
(1) p|n or (2) gcd(p, n) = 1. ??

Proof. Let d = gcd(p, n). Then d|p, but since d > 0, we know that d = 1 or
d = p. If d = 1, then the second situation occurs, then we are done. Else if
d = p, then d|n, which implies that p|n. �

Lemma:

If p is a prime and p|ab, then either p|a or p|b.

Proof. If gcd(p, a) = 1 and p|ab, then a previous corollary (?) guarantees that
p|b. Else, by lemma (??), if gcd(p, a) 6= 1, then p|a. �

Corollary:

If p is a prime and p|a1 · · · an then at least p|ai for some i ∈ {1, ..., n}.

Proof. By induction on n. �

8



Example:

How can we list all prime numbers ≤ 40?
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40


The key technique here is that if n is not prime, then n = ab. If a, b >

√
n,

then ab >
√
n
√
n = n. So a number that is not prime should have at

least one divisor ≤
√
n. So we do this: circle 2 as a prime number, and

then cross out all other even numbers on the board. Then circle 3, and
then cross out out numbers that are multiples of 3 on the board. Then
circle 5 and continue doing the same thing. We only need to do this for
up to n = 6 <

√
40, and all the numbers that remain on the board will

be primes.

Fundamental Theorem of Arithmetic (FTA):

Any integer n > 1 can be factored uniquely into product of primes:

n = pa1
1 pa2

2 · · · p
ak
k

provided that the primes are ordered: p1 < p2 < · · · < pk.

Proof. We first prove existence. Assume for contradiction that FTA fails to hold.
Let X denote the set of integers n > 1 that cannot be factored into primes. X
cannot be empty else there is nothing to contradict. X has a smallest element n
by the well-ordering principle. If n ∈ X is prime, then n is a prime factorization
of itself, so n /∈ X, contradiction.

Otherwise if n is composite, then n = ab for 1 < a, b < n. By minimality
of n, we have a, b /∈ X. This means that both a, b can be factored into primes,
so their product ab = n can also be factored into a product of primes. Contra-
diction.

Now we prove uniqueness. Let X denote the set of integers n > 1 which can be
factored in two ways. Let n be the minimal element of X. Let n = pa1

1 · · · p
ak
k =

qb1
1 · · · q

bl
l be two prime factorizations of n. We know:

p1|n =⇒ p1|qb1
1 · · · q

bl
l

By Euclid’s lemma, p1|qi for some qi. Since qi is prime, p1 = qi for some i.
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Similarly, with parallel logic, q1 = pj for some j. Continuing this logic, all the
pi on the LHS are some qj on the RHS, and vice versa. In particular p1 = q1,
because the smallest prime number for each factorization must be the same.
Then:

n

p1
= n

q1
= pa1−1

1 · · · pakk = qb1−1
1 · · · qbll .

But n/p1 < n, contradicting that n is the smallest element of X with two
different factorizations. �
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Lecture 10/3/2019 (Week 1 Thursday):

Fundamental Theorem of Arithmetic: Any n ∈ Z≥2 can be written as
a product of primes in a unique way.

Theorem (Euclid):

There are infinitely many primes.

Proof. By contradiction. Suppose that 2 = p1 < p2 < ... < pn are the only
primes. Consider the number N := p1p2 · · · pn + 1. Since N > 1, N has a prime
factor p. Since the remainder of N divided by any pi is 1, we must have pi 6= p
for all 1 ≤ i ≤ n. So p is a new prime that is not any of the pi. Contradiction.
�

Example:

(Not on test) Consider a function µ(n) = 0 if p2|n for some p prime,
µ(n) = 1 if n = 1, else µ(n) = (−1)m if n = p1 · · · pm where pi 6= pj . If
you can show that:

µ(1) + ...+ µ(M)√
M

is bounded, then you get a million dollars. This is equivalent to the
Riemann Hypothesis.

Definition:

For all n ∈ Z+, n = 2 3 5 · · · p · · · , where each box can contain a
number that could be 0. We write:

n = 2v2(n)3v3(n) · · · pvp(n).

vp : Z+ → Z≥0 is called the p-valuation of n.
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Example:

What is vp(mn)? First, write

m =
∏

p prime
pvp(m)

For example, if m = 10, then v2(10) = 1, v3(10) = 0, v5(10) = 1, and
vp(10) = 0 for all p > 5. Going back to the question,

mn =
( ∏
p∈P

pvp(m)

)( ∏
p∈P

pvp(n)

)
=
∏
p∈P

pvp(m)+vp(n).

Thus, vp(mn) = vp(m) + vp(n) . In particular, if d|n and n ∈ Z+, then
vp(d) ≤ vp(n). To be more specific, if d|n, then n = dk for some k ∈ Z+.
Hence vp(n) = vp(dk) = vp(d) + vp(k) ≥ vp(d).

Lemma:

d|n if and only if ∀p ∈ P, vp(d) ≤ vp(n).

Proof. We have already proven the forward direction. Now for the other direc-
tion, consider, k =

∏
p∈P p

vp(n)−vp(d) ∈ Z+. (Since k cannot be infinite, vp(n)
has to be eventually zero for some p. This forces vp(d) = 0 eventually as well.)

Then
d · k =

∏
p∈P

pvp(d)
∏
p∈P

pvp(n)−vp(d)

∏
p∈P

pvp(n) = n.

This shows that d|n as desired. �

Lemma:

Let d(n) := number positive divisors of n. Then,

d(n) =
∏
p∈P

(vp(n) + 1).

This product exists, since vp(n) is eventually zero as p increases.
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Proof: We know that d|n if and only if for all p ∈ P, vp(d) ≤ vp(n). Hence,
vp(d) ∈ {0, 1, 2, ..., vp(n)}. So for any prime p ∈ P, there are exactly vp(n) + 1
possibilities for vp(d), and they can be chosen independently for each p ∈ P.
Therefore there are ∏

p∈P
(vp(n) + 1)

choices for d. �

Remark: We have:

vp(k2) = vp(k · k) = vp(k) + vp(k) = 2vp(k).

Lemma: By the remark above, vp(k2) is even for any p ∈ P.

Example:
√

2 is irrational. Indeed, suppose to the contrary that
√

2 is rational.
Then write

√
2 = m/n for m,n > 0. Then, 2 = m2/n2, and 2n2 = m2.

Taking 2-valuations of both sides,

v2(2n2) = v2(m2)

=⇒ v2(2) + 2v2(n) = 2v2(m)

=⇒ 1 = 2v2(m)− 2v2(n)

but the RHS is even. Contradiction. �

Proposition:

n ∈ Z+ is a perfect square ⇐⇒ d(n) is odd.

Proof. Left as HW. Recall that d(n) =
∏
p∈P(vp(n) + 1). Do some even/odd

analysis.

Definition:

We say a ≡ b (mod n), or a is congruent to b modulo n if n|(a− b).
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Example:

If n = 5, then 0 ≡ 5, 1 ≡ 6, ... modulo 5. Intuitively, this just means
that we only care about the point we are at on a pentagon instead of
what label we give to our location.

Remark: We have:
(1) a ≡ b (mod n) =⇒ b ≡ a (mod n).
(2) a ≡ b (mod n) and b ≡ c (mod n) =⇒ a ≡ c (mod n).
(3) a ≡ a (mod n).

Thus congruence modulo n is an equivalence relation on integers. Let’s ac-
tually verify (2). Suppose that a ≡ b and b ≡ c modulo n. This means that
n|(a− b) and n|(b− c). Hence n|(a+ b) + (b− c), which was what was needed
to show that n|(a− c).

Proposition:

a1 ≡ a2 (mod n) and b1 ≡ b2 (mod n) implies:
(1) a1 + b1

n≡ a2 + b2

(2) a1b1
n≡ a2b2

All this means is that when carrying out addition and multiplication, you get
to replace a (bigger) number with another (smaller) number that is the same as
the original (bigger) number mod n.

Proof. For the first one, we have n|(a1−a2)+(b1−b2), so n|(a1 +b1)−(a2 +b2).
For the second claim, we know that n|(a1 − a2) and n|(b1 − b2). We have:

n|(a1b1 − a2b2)

⇐⇒ n|(a1b1 − a2b1 + a2b1 − a2b2)

⇐⇒ n|b1(a1 − a2) + a2(b1 − b2)

⇐= n|(a1 − a2) and n|(b1 − b2)

as desired. �

14



Example:

What is the remainder when 20192018 is divided by 9?

Solution. We have

20192018 = 8+1×10+0×102+2×103+9×104+1×105+0×106+2×107.

What is this modulo 9? We know that 10 9≡ 1, hence 10n 9≡ 1n = 1.
Hence, our number is equivalent to 8 + 1 + 0 + 2 + 9 + 1 + 0 + 2 9≡ 5.
Thus 9|(n − 5). If r is the remainder, then 9|(n − r). This means that
9|(5−n) + (n− r), so that 9|5− r. Also, since 0 < r ≤ 8, we deduce that
−3 ≤ 5 − r < 5. The fact that 9|(5 − r) and −3 ≤ 5 − r < 5 together
imply that 5− r = 0, and thus r = 5.
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Lecture 10/8/2019 (Week 2 Thursday):

Recall: a ≡ b (mod n) is an equivalence relation. Furthermore, if a1 ≡
a2 (mod n) and b1 ≡ b2 (mod n), then a1 + b1 ≡ a2 + b2 (mod n) and a1b1 ≡
a2b2 (mod n).

Example:

Find the remainder when n = 140100109200 is divided by 9.

Solution. Because 10 ≡ 1 (mod 9), 10k ≡ 1 (mod 9). Thus, we
conclude that

n ≡ 1 + 4 + 1 + 1 + 9 + 2 (mod 9)

≡ 0 (mod 9).

Example:

Find the remainder of n divided by 11, where n is as above.

Solution. What is 10 (mod 11)? It equals −1. Hence
10k ≡ (−1)k (mod 11). Hence

n = 140100109200 (mod 11)

≡ −1 + 4− 0 + 1− 0 + 0− 1 + 0− 9 + 2− 0 + 0 (mod 11)

≡ −4 (mod 11).

Notice that if r is the remainder of n divided by 11, then 11|n − r,
equivalently n ≡ r (mod 11). We have also shown n ≡ 7 (mod 11).
Combining the two facts, r ≡ 7 (mod 11), which means that 11|r − 7.
Since −7 ≤ r − 7 < 4, we conclude that r − 7 = 0, so r = 7. (Review
this logic!)

Lemma:

r is the remainder of a divided by n if and only if 0 ≤ r < n and
a ≡ r (mod n).

Proof. ( =⇒ ) If r is the remainder and q is the quotient of a divided by n, then
we know that

a = nq + r, 0 ≤ r < n.
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This tells us that a− r = nq =⇒ n|a− r =⇒ a ≡ r (mod n).

( ⇐= ) Suppose that r′ is the remainder of a divided by n. So by ( =⇒ )
we know that a ≡ r′ (mod n). By assumption we have that a ≡ r (mod n).
Thus by properties of modulo n as an equivalence relation, r ≡ r′ (mod n).
Hence r ≡ r′ (mod n). Hence n|r − r′. We have:

−n < −r′ ≤ r − r′ ≤ r < n.

Hence, r − r′ is a multiple of n that is between −n and n. We conclude that
r − r′ = 0, so r = r′ is the remainder. �

Remark: The general setting of an equivalence relation is as follows. Let X be
a non-empty set. We have a “relation” x1 ∼ x2 for some pairs (x1, x2) ∈ X2.
We say that ∼ is an equivalance relation if:

(1) a ∼ a;
(2) a ∼ b =⇒ b ∼ a;
(3) a ∼ b and b ∼ c =⇒ a ∼ c.

Fact:

Let [a] := {x ∈ X|a ∼ x}. This is a subset of X, called an equivalence
class.

Lemma:

x ∼ a if, and only if [x] = [a].

Proof. ( =⇒ ) We need to show that [x] ⊂ [a] and [a] ⊂ [x]. Suppose y ∈ [x];
then x ∼ y. By assumption, x ∼ a =⇒ a ∼ x. Hence a ∼ y, and y ∈ [a]. This
shows that [x] ⊂ [a]. By symmetry, [a] ⊂ [x], and the claim follows.

( ⇐= ) Suppose now [x] = [a]. Notice that x ∼ x, thus x ∈ [x] = [a] by
assumption. This implies that a ∼ x, and thus x ∼ a. �

17



Theorem:

Suppose ∼ is an equivalence relation on X (has to be nonempty), and
[a] is the equivalence class of a. Then {[a]|a ∈ X} is a partition of X;
that means

(1)
⋃
a∈X [a] = X.

(2) [a] ∩ [a′] 6= ∅ =⇒ [a] = [a′].

Proof. ∀x ∈ X,x ∼ x. This implies that x ∈ [x], which further implies that
x ∈

⋃
a∈X [a]. Now for the second part, suppose that x ∈ [a] ∩ [a′]. This means

a ∼ x and a′ ∼ x, implying that [a] = [x] and [a′] = [x]. Hence, [a] = [x] = [a′].
�

Example:

Let [a]n be the equivalence class of a with respect to a ≡ b (mod n). For
example, [0]2 = 2Z. Another example: what is [1]3 (the residue class of
modulo n)? This is just 3Z + 1.

Remark: Intuitively, [a]n just means: all the numbers equal to a when (mod n).

Proposition:

? [a]n = [b]n ⇐⇒ a ≡ b (mod n). Thus, [1]5 = [6]5, for example.

Remark: Zn = {[a]n|a ∈ Z} is a partition of Z. Notice that if r is the remain-
der of a divided by n, then [a]n = [r]n. So, Zn = {[0]n, [1]n, ..., [n−1]n}. Notice
that [i]n 6= [j]n if 0 ≤ i 6= j < n, so |Zn| = n. (Important)

Remark (continued): Let [a]n + [b]n := [a + b]n, and [a]n · [b]n := [ab]n.
We must show that these operations are independent from the choice of a, b.
That is, we have to show that these operations are well-defined. That is, if
[a1]n = [a2]n and [b1]n = [b2]n, then we have to show [a1 + b1]n = [a2 + b2]n and
[a1b1]n = [a2b2]n.
We know that:

[a1]n = [a2]n, [b1]n = [b2]n
⇐⇒ a1 ≡ a2 (mod n), b1 ≡ b2 (mod n)

=⇒ a1 + b1 ≡ a2 + b2 (mod n), a1b1 ≡ a2b2 (mod n)
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=⇒ [a1 + b1]n = [a2 + b2]n, [a1b1]n = [a2b2]n.

Example:

Let us draw a multiplication table with Z6:

All of the [·] should implicitly have a “6” subscript, but I didn’t
include that.

Remark: (Zn,+, ·) has: distribution, associativity for +, identity element for
addition [0], inverse element for addition [−a], and [1][a] = [a][1] = [a]. Thus,
(Zn,+) is a group. The function f : Z→ Zn, f(a) = [a]n is a group homomor-
phism. That means, f(ab) = f(a) · f(b).

Question:

What elements of Zn do have multiplicative inverse? That is, we want
to find the [a]n such that for some x, [x]n is such that [a]n[x]n = [1]n.

This is the case if and only if [ax]n = [1]n ⇐⇒ ax ≡ 1 (mod n) ⇐⇒
ax − 1 = ny for some y ∈ Z ⇐⇒ ax − ny = 1 for some x and y in
Z. The integer solutions (x, y) are possible if and only if gcd(a, n) = 1.
That is, a and n need to be relatively prime.

So for example, in the Z6 multiplication table above, only [1]6
and [5]6 have multiplicative inverses.

Proposition:

[a]n has a multiplicative inverse if, and only if gcd(a, n) = 1.
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Corollary:

All [a]p ∈ Zp\{[0]p} have a multiplicative inverse if p is prime.

Example:

Find [7]−1
11 .

Solution. We have [7x]11 = [1]11 ⇐⇒ 7x ≡ 1 (mod 11) =⇒ 11|7x− 1.
This means that for some (x, y), 11y = 7x − 1 =⇒ 7x − 11y = 1. We
can take x = 8, y = 5. Hence, [7]−1

11 = [8]11 = [−3]11.
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Lecture 10/10/2019 (Week 2 Thursday):

Recall: [a]n has a multiplicative inverse ⇐⇒ gcd(a, n) = 1.

Corollary:

p prime ⇐⇒ any non-zero element of Zp has a multiplicative inverse.

Proof. ( =⇒ ) We have proved this in the previous lecture.

( ⇐= ) For all 1 ≤ a ≤ p − 1, [a]p has a multiplicative inverse =⇒ for all
1 ≤ a ≤ p− 1, gcd(a, p) = 1 =⇒ p is prime. �

Definition:

We say [a]n is invertible if it has a multiplicative inverse.

Let Z×n be the set of invertible elements. Let

Z×n = {[a]n|1 ≤ a ≤ n− 1, gcd(a, n) = 1}.

Lemma:

(Z×n , ·) is a group.

Proof. We have already discussed that · has associativity and that [1]n · [a]n =
[a]n · [1]n = [a]n. (Hence [1]n is the neutral element.) We need to check that Z×n
is closed under multiplication. That means if [a]n and [b]n are invertible, then
their product [a]n · [b]n is invertible.

Since [a]n is invertible, [a]n[a∗]n = [1]n for some a∗. Similarly, [b]n[b∗]n = [1]n
for some b∗. Observe that:

([a]n · [b]n)([b∗]n · [a∗]n) = [1]n

This shows that [a]n · [b]n ∈ Z×n . The last thing we check is that ∀[a]n ∈ Z×n ,
there exists [a∗]n ∈ Z×n as the inverse of [a]n (i.e. inverse has to be in the group).
Since [a]n ∈ Z×n , we know that there is [a∗]n such that [a]n[a∗]n = [1]n, but this
means that [a∗]n is invertible, so the claim follows. �
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Example:

[a]n[x]n = [1]n for some x if and only if ax ≡ 1 (mod n), if and only if
ax − 1 = ny for some y ∈ Z. This happens if and only if there exists
x, y ∈ Z such that ax− ny = 1.

Example:

Find [13]−1
29 .

Solution. 29 = 13 × 2 + 3, 13 = 3 × 4 + 1, and 3 = 1 × 3 + 0.
Going backwards, we get that

1 = 13− 3× 4 = 13− (29− 13× 2)× 4

= (29)(−4) + (13)(1 + 8)

= 29× (−4) + 13× 9.

This implies that [13]−1
29 = [9]29.

Definition:

Suppose (G, ·) and (H, ?) are two groups. A map f : G→ H is called a
group homomorphism if

f(g1 · g2) = f(g1) ? f(g2).

Example:

Consider f : Z→ Zn, f(a) = [a]n, both groups with the addition opera-
tion. f is a surjective group homomorphism.

Definition:

Let f : G→ H be a group homomorphism. We define

ker(f) = {g ∈ G|f(g) = neutral element of H}.
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Example:

In the previous example, a ∈ ker(f) ⇐⇒ [a]n = [0]n ⇐⇒ n|a. So
ker(f) = nZ.

Example:

Suppose (G, ·), (H, ?) are groups. Then (G×H, ◦) is a group where

(g1, h1) ◦ (g2, h2) = (g1 · g2, h1 ? h2).

It is easy to check that G×H is a group.

Example:

Consider f : Z → Zn × Zm, f(a) = ([a]n, [a]m). We claim that this is a
group homomorphism. We check that

f(a1 + a2) = ([a1 + a2]n, [a1 + a2]m)

f(a1) + f(a2) = ([a1]n, [a1]m) + ([a2]n, [a2]m) = ([a1 + a2]n, [a1 + a2]m)

as needed. Now notice that a ∈ ker(f) ∈ ([a]n, [a]m) = ([0]n, [0]m) ⇐⇒
[a]n = [0]n and [a]m = [0]m ⇐⇒ n|a,m|a ⇐⇒ lcm(m,n)|a. Hence
ker(f) = lcm(m,n)Z.

Example:

If f : Z → Z2 × Z4, f(a) = ([a]2, [a]4), then f is not surjective as
([0]2, [1]4) cannot be in the image. (Since otherwise, we would have a
both even and odd.)

Chinese Remainder Theorem:

f : Z → Zn × Zm, f(a) = ([a]n, [a]m) is surjective if gcd(n,m) = 1. In
other words, for all b, c ∈ Z, there exists x ∈ Z, such that x ≡ b (mod n)
and x ≡ c (mod m).

Proof. We borrow an idea from linear algebra. If a linear mapping T : R→ R2

has both standard basis vectors in its image, then it is onto. (Of course such
a linear map doesn’t exist, else R2 would be spanned by v = [T ], and would
have dimenision 1.) Why is ([1]n, [0]m) in the image? We are looking for x ∈ Z
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such that x ≡ 1 (mod n) and x ≡ 0 (mod m). This means that x = my
for some y ∈ Z. Thus, we want to find y such that my ≡ 1 (mod n). Since
gcd(m,n) = 1, there exists m∗ such that mm∗ ≡ 1 (mod n). We then have
f(mm∗) = ([mm∗]n, [mm∗]m) = ([1]n, [0]m).

To make the last part a bit clearer, let me put it this way. Since gcd(m,n) = 1,
there exists x′, y′ ∈ Z such that nx′ + my′ = 1. Then my′ − 1 = −nx′, so
choosing x = my′ will ensure that x ≡ 0 (mod m) and x ≡ 1 (mod n) as we
needed. So in the last paragraph we are setting y′ = m∗.

Similarly, if x ≡ 0 (mod n) and x ≡ 1 (mod m), then we write x = ny ≡
1 (mod m). And again since gcd(m,n) = 1 means that there is n∗ such that
nn∗ ≡ 1 (mod m). So f(nn∗) = ([nn∗]n, [nn∗]m) = ([0]n, [1]m).

To clarify again, since gcd(m,n) = 1, there exists x′, y′ ∈ Z such that nx′ +
my′ = 1. Then nx′ = −my′ + 1. Hence, choosing x = nx′ will ensure that
x ≡ 0 (mod n) and x ≡ 1 (mod m). So in the last paragraph we are setting
x′ = n∗.

Now given any b, c ∈ Z, we have

f(b(mm∗) + c(nn∗))

= f(b(mm∗)) + f(c(nn∗)) (because f is a group homomorphism)

([bmm∗]n, [bmm∗]m) + ([cnn∗]n, [cnn∗]m)

= ([b]n, [0]m) + ([0]n, [c]m) = ([b]n, [c]m)

as desired. �

Proposition:

If n,m are relatively prime, then an explicit solution to x = [b]n, x = [c]m
is given by

x = npc+mqb

where p, q are integers so that np+mq = 1.

Lemma:

In a group (G, ·) any g ∈ G has a unique inverse that we denote by g−1

(or by −g in the additive case).
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Proof. Suppose that g · g′ = 1G and also suppose that g′′ · g = 1G. Notice that
we are only assuming that g′ is a right inverse and g′′ is a left inverse. Then

g′′ · (g · g′) = g′′ · 1G = g′′

(g′′ · g) · g′ = 1G · g′ = g′.

Hence g′ = g′′ because the two expressions we started with are equal by asso-
ciativity. �

Wilson’s Theorem:

Suppose that p is prime. Then (p− 1)! ≡ −1 (mod p).

Proof. For (1)(2) · · · (p− 1), we may pair any [a]p with its inverse. This way we
are left with product of numbers that are their own inverses. The only num-
bers remaining in the product is x such that x2 ≡ 1 (mod p). This happens
iff p|x2 − 1 iff x ≡ 1 (mod p) or x ≡ −1 (mod p) iff x = 1 or x = p − 1 as
1 ≤ x ≤ p− 1. This implies that (p− 1)! ≡ (1)(p− 1) (mod p). �

Fermat’s Little Theorem:

p prime =⇒ ap ≡ a (mod p).

In particular, if gcd(a, p) = 1, then ap−1 ≡ 1 (mod p).

Proof. If [a]p = 0, then ap ≡ a ≡ 0 (mod p). So we can and will assume that
[a]p 6= [0]p. For now let us introduce a trick. Let f : Zp → Zp, f([x]p) = [a]p[x]p.
Since p is prime and [a]p 6= [0]p, there exists a∗ such that [a]p[a∗]p = [1]p. De-
fine g([x]p) = [a∗]p[x]p. Notice that f(g([x])) = [a]p([a∗]p[x]p) = [x]p by asso-
ciativity. Also g ◦ f = id by a similar argument. Hence f is a bijection, and
f([0]p) = [0]p. So f(Zp\{[0]p}) = Zp\{[0]p}.

Thus f is just a permutation, so we certainly have

f([1]p) · · · f([p− 1]p) = [1]p[2]p · · · [p− 1]p.

But the above expression is also equal to

([a]p[1]p) · · · ([a]p[p− 1]p)

= [a]p−1
p [(p− 1)!]p = [(p− 1)!]p
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By Wilson’s Theorem,
[a]p−1

p [−1]p = [−1]p

=⇒ [a]p−1
p = [1]p

⇐⇒ ap−1 = 1 (mod p)

as desired. �
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Lecture 10/15/2019 (Week 3 Tuesday):

Recall: Fermat’s little theorem says that ap = a (mod p) if p is prime.

Example:

Find the remainder of 250 divided by 7.

Solution. By Fermat’s little theorem, a49 = (a7)7 ≡ a7 ≡ a (mod 7),
where a = 2. Hence

250 = 249 · 2 ≡ 2 · 2 ≡ 4 (mod 7).

Since 0 ≤ 4 ≤ 6, the remainder of 250 divided by 7 is 4.

Definition:

Let Sn := {f : {1, ..., n} → {1, ..., n}|f is a bijection}. Think about
Sn as the set of symmetries of the complete graph with n vertices (A
complete graph is a graph where all the vertices are connected).

Sn is called the symmetric group. Indeed, f, g are bijections, then f ◦ g is also
a bijection.

Recall: f is a bijection if and only if it has an inverse function f−1. Hence, to
show that the composition of bijections f ◦g is also a bijection, it suffices to show
that it has an inverse function. It is easy to check that (f ◦g)◦ (g−1 ◦f−1) = id.

Lemma:

(Sn, ◦) is a group.

Proof. We have already discussed that ◦ defines an operation on Sn. We have:
(1) f ◦ id = id ◦ f = f
(2) f ◦ f−1 = f−1 ◦ f = id
(3) Associativity of function composition. �
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Example:

Consider (
1 2 3 4

f(1) = 4 f(2) = 3 f(3) = 2 f(4) = 1

)
(

1 2 3 4
g(1) = 1 g(2) = 3 g(3) = 4 g(4) = 2

)
We then have(

1 2 3 4
f(1) = 4 f(2) = 3 f(3) = 2 f(4) = 1

)
(

1 2 3 4
(f ◦ g)(1) = 4 (f ◦ g)(2) = 2 (f ◦ g)(3) = 1 (f ◦ g)(4) = 3

)
We can calculate g◦f similarly, and we observe that f ◦g 6= g◦f . Hence
(S4, ◦) is not an Abelian group.

Remark: The professor drew arrow diagrams, which is probably more infor-
mative than what I drew.

Definition:

A group (G, ·) is called Abelian if

∀g1, g2 ∈ G, g1 · g2 = g2 · g1.

Example:
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Definition:

A permutation σ ∈ Sn is called a cycle if for some i1, i2, ..., im we have

σ(i1) = i2, σ(i2) = i3, ..., σ(im) = i1

and other values fixed. We denote this cycle by (i1 i2 · · · im). m is called
the length of this cycle.

Remark: So the permutation in the last picture is not a cycle, because it has
multiple “loops”.

Remark: It is not clear if (1, 2) ∈ S2 or Sn for some n ≥ 2. To address
this issue, we view

Sm ⊂ Sn
if m ≤ n. Sm, by this kind of embedding, is a subgroup of Sn if m ≤ n.

Example:

(1 2)(2 3) = (1 2 3). You read (2, 3) as “2 goes to 3, and 3 goes to 2”.

Example:(
1 2

) (
2 1

)
= id.

Lemma (Linking):(
a1 a2 · · · an

) (
an an+1 · · · an+m

)
where ai 6= aj if i 6= j, is equal to(

a1 a2 · · · an+m
)

Proof. Without loss of generality compute(
1 2 · · ·n

) (
n · · ·n+m

)
=
(
1 2 · · ·n− 1 n n+ 1 · · ·n+m

)
by just thinking about what is going on. �
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Example:(
1 2 3

)2 =
(
3 2 1

)
=
(
1 3 2

)
.

Proposition:

σm = id if σ is a cycle of length m. Subsequently, σmk = id. In this
case, σm−1 = σ−1.

Remark: The only cycle of length 1 is the identity. We could write (1), (2), (3)
etc.

Definition:

For σ ∈ Sn, let Mσ := {i ∈ [1 · · ·n]|σ(i) 6= i}. We say that σ, τ are
disjoint if Mσ ∩Mτ = ∅. That is for every i, either σ(i) 6= i or τ(i) 6= i,
but not both.

Lemma:

σ(Mσ) = Mσ. That is, if i ∈Mσ =⇒ σ(i) ∈Mσ. Also, ∀j ∈Mσ, ∃i ∈
Mσ, such that σ(i) = j.

Proof. Suppose to the contrary that we have i ∈ Mσ yet σ(i) /∈ Mσ. Since
i ∈ Mσ, σ(i) 6= i. On the other hand, since σ(i) /∈ Mσ, σ(σ(i)) = σ(i).
Since σ is an injection, σ(i) = i, which is a contradiction. This implies that
σ(Mσ) ⊂ Mσ. Since σ is a bijection, |σ(Mσ)| = |Mσ|. Hence σ(Mσ) = Mσ. �
(Here we have used the fact that for two finite sets A,B, if A ⊂ B and |A| = |B|,
then A = B.)

Lemma:

If σ and τ are two disjoint permutations, then στ = τσ.
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Proof. We want to show that for any i we have

σ(τ(i)) = τ(σ(i)).

Case 1: if i /∈Mσ ∪Mτ , then both τ and σ fixes i, so there is nothing to prove.
Case 2: if i ∈Mσ, then σ(i) ∈Mσ by the lemma. Then,

i ∈Mσ =⇒ i /∈Mτ =⇒ τ(i) = i

σ(i) ∈Mσ =⇒ σ(i) /∈Mτ =⇒ τ(σ(i)) = σ(i)

Hence
σ(τ(i)) = σ(i)

τ(σ(i)) = σ(i)

so τ(σ(i)) = σ(τ(i)). Case 3 is similar to case 2. �
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Lecture 10/17/2019 (Week 3 Thursday):

Example:

(Yes, I know that 2 is supposed to be connected to 4, I made a
mistake.) The point of this picture is that σ = τ1τ2, so σ can be written
as a composition of disjoint cycles.

Theorem:

Any σ ∈ Sn\{id} can be written as a product of disjoint cycles. And
such a product is unique up to reordering.

Proof. (Existence) We proceed by induction. If σ(n) = n (i.e. the last number is
fixed), then σ ∈ Sn−1 (if we view Sn−1 ≤ Sn). So by the induction hypothesis,
σ can be written as a product of disjoint cycles.

Suppose σ(n) = m 6= n. Let τ = (m n). Then (τσ)(n) = τ(σ(n)) = τ(m) = n.
Hence, τσ ∈ Sn−1. So by the induction hypothesis, τσ can be written as a
product of disjoint cycles, say τσ = γ. Multiplying both sides by τ , σ = τγ.
We have to make sure that τ = (m n) and γ are disjoint.

Claim: n does not appear in (the, we don’t have uniqueness yet) cycle de-
composition of γ. Indeed, if we write γ = τ1τ2 · · · τk, then observe that

Mτ1τ2···τk =
k⋃
i=1

Mτi

and since γ(n) = n, n /∈ Mτ1···τk . Hence, n /∈ Mτi for all i. Next, we consider
two cases for m.
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First, suppose γ = τ1 · · · τk where τi are disjoint cycles. If m /∈
⋃k
i=1 Mτi ,

then (m n) and τi are disjoint. Then we are done, since

σ = (m n)τ1 · · · τk

is written as a product of disjoint cycles.

Second, suppose that m ∈
⋃k
i=1 Mτi , then since the τi are disjoint, we have

m in exactly one Mτi . And since τi commute, we can assume WLOG m ∈Mτ1 .
Then

τ1 =
(
m a1 · · · al

)
.

So
σ =

(
n m

)
τ1 · · · τk

=
(
n m

) (
m a1 · · · al

)
τ2 · · · τk

=
(
n m a1 · · · ak

)
τ2 · · · τk

as desired.

(Uniqueness) Suppose now that

τ1 · · · τk = σ1 · · ·σl

where τi are disjoint cycles and σi are also disjoint cycles. For all i ∈ Mα =
Mτ1···τk = Mσ1···σl =

⋃
Mτj =

⋃
Mσj . Because the cycles are disjoint, we must

have i moved by exactly one Mτj and exactly one Mσj . Hence, after reordering,
we can assume that i ∈Mτk . Similarly, we can assume that i ∈Mσl . Write

τk =
(
i a1 · · · ar

)
σl =

(
i b1 · · · bs

)
.

Then α(i) = τ1 · · · τk(i) = τk(i) = a1 because τi are disjoint. Repeating this
argument, we get that αt(i) = τ tk(i). By a similar argument, we have that

αt(i) = σtl (i).

This implies that τk = σl, so we can “cancel” out both of those in the two
decompositions to get

τ1 · · · τk−1 = σ1 · · ·σl−1.

By the induction hypothesis we get uniqueness. �

Remark: A key idea is that if two permutations both change the same value,
then the two permutations can be combined into one permutation. Also this
proof won’t be on the test.

Recall: Mτ = {i ∈ [1, ..., n]|τ(i) 6= i}. If Mτ1 ∩Mτ2 = ∅, then τ1τ2 = τ2τ1.
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Proposition:

Mτ1τ2 = Mτ1 ∪Mτ2 .

Proof. i /∈ Mτ1 ∪Mτ2 =⇒ τ1(i) = τ2(i) = i =⇒ τ1τ2(i) = i =⇒ i /∈ Mτ1τ2 .
For the other direction, suppose that i ∈ Mτ1 ∪Mτ2 . Then in the first case,
suppose i ∈ Mτ1 and i /∈ Mτ2 . Hence τ2(i) = i and τ1(i) 6= i, which implies
τ1τ2(i) = τ1(i) 6= i. Case 2 is similar. �

Example:

If τ = (a1 a2 · · · am) and m ≥ 2, then

Mτ = {a1, ..., am}.

Definition:

A cycle of length 2 is called a transposition. It looks something like(
i j

)
with i 6= j.

Proposition:

Any permutation σ ∈ Sn can be written as a product of transpositions.

Proof. We have already shown that any permutation can be written as a product
of cycles, so it suffices to show that every cycle can be written as a product of
transpositions. Notice that given a cycle

(
a1 a2 · · · an

)
, we can use linking and

induction to show that it equals(
a1 a2

) (
a2 a3

)
· · ·
(
an−1, an

)
as desired. � The product is certainly not unique, but the parity of the number
of flips is unique.
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Theorem:

If τi and σi are transpositions and τ1 · · · τm = σ1 · · ·σl, then m ≡
l (mod 2).

Proof. Notice that
(σ1 · · ·σl)(σl · · ·σ1) = id.

Hence
τ1 · · · τmσl · · ·σ1 = id.

So it is enough to show that if

id = γ1 · · · γk

and γi’s are transpositions, then k is even. (So in particular if we can show that
this is true, then m+ l is even, and we are done.) Consider the following steps.

Step 1: Bring all a’s to the left.
Step 2: Reduce the number of a’s.
Step 3: There is no a at the end of this process.

For steps 1 and 2, we do something like (y x)(a x) = (a x)(y z). Or do
something like (x y)(a x) = (y x)(x a) = (a y)(y x). Or, we could even
have (a x)(a x) = id. Another possible scenario is (a x)(a y) = (a y x) =
(a y)(y x).

The point is, we can bring a to the left without changing the number of trans-
positions, while even being able to reduce the number of transpositions. Notice
that we cannot have only one a in the transposition, else a will not be fixed
under γ1 · · · γk(a).

In this process, we are not changing the parity of the number of transposi-
tions. And, at the end there are 0 transpositions. �

Midterm: Cutoff is at section 1.4.
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Lecture 10/22/2019 (Week 4 Tuesday):

Example:

Groups include (Z,+), (Zn,+), (Z×n ,×), (Q×,×). These are the abelian
groups. Groups that are not abelian include (GL(n),×), (Sn, ◦) (for
n ≥ 3).

Example (continued):

To show that Sn is not abelian, it is enough to argue that S3 is non-
abelian. Indeed, consider (1 2) and (3 1).

(1 2)(3 1) = (1 3 2)

(3 1)(1 2) = (3 1 2).

Example:

Consider
S1 = {z ∈ C||z| = 1}.

Then (S1, ·) is a group, because 1 ∈ S1, and z ∈ S1 =⇒ z ·z = |z|2 = 1,
and |z| = 1. So z−1 = z ∈ S1. Multiplication is associative.

Now consider the roots of unity

µn := {z ∈ C|zn = 1}

= {e 2kπi
n |0 ≤ k < n}.

Intuitively, this just means 2kπ/n angles on the complex unit circle.
Indeed, zn = 1 =⇒ |z|n = 1. Since |z| ≥ 0, we conclude that |z| = 1.
This further implies that z = eiθ. Combining this with the fact that
zn = 1, we have zn = einθ = 1, so nθ ∈ Z2π, so θ = 2kπ/n for some
k ∈ Z.

This is a subgroup of S1. Indeed, notice that zn1 , z
n
2 = 1 =⇒

(z1z2)n = zn1 z
n
2 = 1. Also zn = 1 =⇒ (z−1)n = (zn)−1 = 1. Also

1n = 1. Hence µn is indeed a subgroup of S1.
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Subgroup criterion:

Suppose (G, ·) is a group, and H ⊂ G. Then H is a subgroup of G if
and only if
(1) e ∈ H, where e is the neutral element of G.
(2) g1, g2 ∈ H =⇒ g1 · g2 ∈ H (we say that H is closed under multipli-
cation).
(3) g ∈ H =⇒ g−1 ∈ H (we say H is symmetric, or H is closed under
inversion).

Suppose (G, ·) is a group. ∀g ∈ G, g · g · · · g︸ ︷︷ ︸
n times

= gn for n ∈ Z+. We define g0

to be the neutral element. We also define g−n = (gn)−1 = (g · g · · · g︸ ︷︷ ︸
n times

)−1. This

equals (g)−1 · · · (g)−1 = (g−1)n.

Exponential laws:

(1) ∀m,n ∈ Z, ∀g ∈ G, (gm)(gn) = gm+n.
(2) (gm)n = gmn.

Proof. If m,n ∈ Z+, then
gm = g · · · g︸ ︷︷ ︸

m times

gn = g · · · g︸ ︷︷ ︸
n times

.

Hence conclusion obvious by associativity. Also,

(gm)n = gm · · · gm︸ ︷︷ ︸
n times

= (g · · · g) · · · (g · · · g) = gmn.

Now if m > 0 and n < 0, and additionally m+ n > 0, then

gm · gn = g · · · g︸ ︷︷ ︸
m times

g−1 · · · g−1︸ ︷︷ ︸
n times

= gm+n = g · · · g︸ ︷︷ ︸
m+n

g · · · g︸ ︷︷ ︸
−n

(g−1 · · · g−1)︸ ︷︷ ︸
−n

= gm+n

by cancellation. The other case may be checked similarly. For example, if m > 0
and n < 0, then mn < 0, and

(gm)n = ((gm)−n)−1 = (gm(−n)) = (g−mn)−1 = gmn.
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Recall: Suppose (G, ·) and (H, ?) are groups. A map f : G → H is a group
homomorphism if

f(g1 · g2) = f(g1) ? f(g2).

Definition:

f : G→ H is called an isomorphism if f is a homomorphism and bijec-
tion.

Example:

Suppose (G, ·) is a group and g ∈ G. Then f : Z → G, f(n) = gn, is a
group homomorphism.

Proof. We have to check that f(n+m) = f(n)·f(m). We have f(n+m) = gn+m

and f(n) · f(m) = gn · gm = gn+m, where the last equality is justified by the
exponential laws. �

Example:

If an = bn and am = bm for some coprime integers m,n, then a = b.

Indeed, since gcd(m,n) = 1, we write rm + sn = 1 for r, s ∈ Z.
Hence

a = a1 = arm+sn = armasn = (am)r(an)s = (bm)r(bn)s

= bmrbns = bmr+ns = b.

Example:

If g ∈ G, let
cg : G→ G, cg(x) = gxg−1.

We say that gxg−1 is a conjugate of x. We claim that cg is an isomor-
phism. (An isomorphism from G to itself is called an automorphism).

Proof. Need to show that

cg(xx′) = cg(x)cg(x′).
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For the LHS,
cg(xx′) = gxx′g−1.

Also
cg(x)cg(x′) = gxg−1gx′g−1 = gxx′g−1.

Hence cg is a homomorphism. Next, we claim that cg−1 ◦ cg = cg ◦ cg−1 = idG,
which shows that cg is a bijection. Indeed,

cg−1(cg(x)) = cg−1(gxg−1) = g−1(gxg−1)(g−1)−1 = x.

We call cg an inner automorphism. We also remark that if G is Abelian, then
cg(x) = x.

Proposition:

cg1cg2 = cg1g2 .

Proof: Direct computation.

Remark: c : G→ Aut(G), where C(g) := cg is a group homomorphism.

Example:

Suppose that aba−1 = b2 and a3 = e. Show that b7 = e.

Solution. Notice that ca(b) = b2, so ca(ca(b)) = ca(b2) = ca(b)ca(b) = b4,
where the second-to-last equality follows from the fact that ca is a group
homomorphism. So we obtain

ca2(b) = ca(ca(b)) = b4.

Hence
ca(ca2(b)) = ca(b4) = ca(b)4 = (b2)4

But we also have
ca(ca2(b)) = ca3(b) = b8

=⇒ ce(b) = b8 =⇒ b = b8 =⇒ e = b8 · b−1

as desired.
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Lecture 10/24/2019 (Thursday):

Two-Step Subgroup Test

Let (G, ·) be a group. A set H ⊂ G is a subgroup of G if the following
conditions are satisfied:
(1) eG ∈ H
(2) h1, h2 ∈ H =⇒ h1 · h2 ∈ H
(3) h ∈ H =⇒ h−1 ∈ H.

Example:

Let φ : G1 → G2 be a group homomorphism. Then

Im(φ) := {φ(g)|g ∈ G1}

is a subgroup of G2. We check this using the two-step subgroup test.

(1) We claim that φ(eG1) = eG2 . Indeed,

φ(eG1) = φ(eG1 · eG1) = φ(eG1) · φ(eG1).

Since the neutral element is unique, we have φ(eG1) = eG2 .

(2) Let g, g′ ∈ Im(φ). Then we can write g = φ(h) and g′ = φ(h′) for
h, h′ ∈ G1. Then

g · g′ = φ(h) · φ(h′) = φ(hh′).

Hence g · g′ ∈ Im(φ).

(3) Let g ∈ Im(φ). Then we can write g = φ(h) for h ∈ G1.
Then we claim that g−1 = φ(h−1). Indeed,

g · φ(h−1) = φ(h) · φ(h−1) = φ(h · h−1) = φ(eG1) = eG2

φ(h−1) · g = φ(h−1) · φ(h) = φ(h−1h) = eG2 .
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Example:

Recall that we have defined the kernel of a group homomorphism f :
G1 → G2 to be

ker(φ) := {g ∈ G1|φ(g) = eG2}.

This is a subgroup of G. Indeed,

(1) φ(eG1) = eG2 =⇒ eG1 ∈ ker(φ)
(2) Suppose g, g′ ∈ ker(φ). Then φ(g ·g′) = φ(g) ·φ(g′) = eG2 ·eG2 = eG2 .
(3) Suppose g ∈ ker(φ). Then φ(g−1) = φ(g)−1 = e−1

G2
= eG2 .

Definition:

Let G be a group and let g be an element of G. We define the centralizer
of g to be

CG(g) := {g′ ∈ G|g · g′ = g′ · g}.
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Lecture 10/29/2019 (Tuesday):

Remark: Midterm: median 39, average 37.9, (1/4)th of students ≥ 45, (3/4)th
of students ≥ 28. There are 12 students ≤ 27, which is C range. There are 17
students ≥ 44, which is A range.

Recall: If φ : G → H is a group homomorphism, then Im(φ) ≤ H is a sub-
group, and ker(φ) ≤ G is a subgroup.

Definition:

Let (G, ·) be a group and for g ∈ G define

CG(g) := {h ∈ G|gh = hg}.

This is called the centralizer of g in G.

Proposition:

CG(g) is a subgroup of G.

Proof. e · g = g · e = g, where e is the neutral element. This shows that
e ∈ CG(g). Next, let h ∈ CG(g). This means that gh = hg. Multiplying both
sides by h−1 repeatedly, we get

h−1g = gh−1.

Hence h−1 ∈ CG(g). Lastly if h1, h2 ∈ CG(g), then

(h1h2)g = h1(h2g) = h1(gh2)

(h1g)h2 = (gh1)h2.

This shows that h1h2 ∈ CG(g). �

Proposition:

Let H1, H2 ≤ G. Then H1∩H2 ≤ G. More generally, {Hi}i∈I is a family
of subgroups of G, then

⋂
i∈I Hi is a subgroup of G.

Proof. ∀i ∈ I, since Hi ≤ G, e ∈ Hi. This means that e ∈
⋂
i∈I Hi. Now let

g ∈
⋂
i∈I Hi. Then since Hi is a subgroup, g−1 ∈ Hi for every i, and hence
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g−1 ∈
⋂
i∈I Hi. Finally let h1, h2 ∈

⋂
i∈I Hi. Since for all i ∈ I, Hi is a sub-

group, h1h2 ∈ Hi for all i ∈ I. Hence h1h2 ∈
⋂
i∈I Hi. �

Example:

Suppose that H1, H2 ≤ G. If H1 ∪ H2 ≤ G, then either H1 ⊂ H2 or
H2 ⊂ H1.

Proof. Suppose to the contrary that this is not the case. Then
there exists h1 ∈ H1\H2 and h2 ∈ H2\H1. Since H1 ∪ H2 ≤ G,
h1h2 ∈ H1 ∪H2. In particular

h1h2 ∈ H1 or h1h2 ∈ H2

=⇒ h−1
1 h1h2 ∈ H1 or h1h2h

−1
2 ∈ H2

h2 ∈ H1 or h1 ∈ H2.

Contradiction.

Definition:

Define
Z(G) := {g ∈ G|∀h ∈ G, gh = hg}.

This is called the center of G. Observe that

Z(G) =
⋂
h∈G

CG(h).

This is a subgroup of G.

Indeed, if g ∈
⋂
h∈G CG(h), then for all h ∈ G, g ∈ CG(h) ⇐⇒ ∀h ∈

G, gh = hg ⇐⇒ g ∈ Z(G).

Example:

Since S2 is Abelian, Z(S2) = S2.
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Example:

What about Sn for n ≥ 3? If σ ∈ Z(Sn), then ∀τ ∈ Sn, τστ−1 = σ. If
σ 6= Id, then σ =

(
a b · · ·

) (
...
) (
...
)
. Observe that

τστ−1 = τ(a b ...)τ−1τ(...)τ−1...τ(· · · )τ−1

= (τ(a) τ(b) ...)(...)(...).

This follows by result from midterm 1. Since the initial cycles were
disjoint, after applying τ , we get disjoint cycles again. If τ(a) = a and
τ(b) = c /∈ {a, b} (notice that this requires n ≥ 3). Then

τστ−1(a) = τσ(a) = τ(b) = c

while
σ(a) = b 6= c.

So τστ−1 6= σ. From all of this work we conclude that σ /∈ Z(Sn). So

Z(Sn) = {id}.

Example:

We have

Z(GLn(R)) =
{(

c 0
0 c

)
|c ∈ R×

}
= R×I.

This conclusion should follow by observing that

g

(
1 1
0 1

)
=
(

1 1
0 1

)
g

g

(
1 0
1 1

)
=
(

1 0
1 1

)
g

if g ∈ Z(GLn(R)).

Example:

Z(Zn) = Zn since Zn is Abelian.

What is the smallest subgroup that contains g ∈ G? Certainly such a subgroup
should contain {e, g, g−1, g−2, ..., g2, g3, ...}. We have discussed that φ : Z→ G,
φ(n) = gn is a group homomorphism. Thus, the image of φ is a subgroup, which
is exactly the subgroup form we have above.
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Definition:

This is called the subgroup generated by g, and it is denoted by 〈g〉. This
is the smallest subgroup of G that contains g.

Example:

< 2 > in Z is 2Z.

Example:

< 2 > in Z5 is Z5. Indeed,

< 2 >= {2n|n ∈ Z}.

For what integers m do we have

[2n]5 = [m]5

for some n ∈ Z? Alternatively we need to find out if

2n ≡ m (mod 5)

has a solution. Since gcd(2, 5) = 1, it has a solution for any m. So any
element of Z5 is in < 2 >.

Definition:

Suppose (G, ·) is a group and g ∈ G. Then the smallest positive integer
n such that gn = e (if it exists) is called the order of g. It is denoted by
o(g) or |g|.

If there is no such n, we say that o(g) = ∞; g is of infinite or-
der.

Lemma:

If (G, ·) is a finite group, then any element has finite order.

Proof. Suppose |G| = n. Consider {e, g, g2, ..., gn} ⊂ G. By pigeonhole, for
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some 0 ≤ i < j ≤ n we have gi = gj . But this implies

gig−i = gjg−i =⇒ e = gj−i.

Hence g is of finite order. �

Lemma:

Suppose that (G, ·) is a finite abelian group, then for all g ∈ G,

g|G| = e.

Proof. Consider lg : G → G, lg(h) = gh. Then we claim that l is a bijection.
Indeed,

lg−1 ◦ lg(h) = lg−1(lg(h)) = h

lg ◦ lg−1(h) = h.

Notice that we have not used that fact that G is a finite abelian group. Next,
using the fact that lg is a bijection on a finite set, if G = {g1, ..., gn}, then
{gg1, gg2, ..., ggn} is also G. Since G is Abelian, we deduce that

(g1 · · · gn) = (gg1)(gg2) · · · (ggn)

= gn(g1g2 · · · gn)

=⇒ gn = e.

This completes the proof. �

Remark: lg : G→ G, lg(h) = gh is a bijection for any group G.

Recall: φ : Z → G, φ(n) = gn is a group homomorphism. This implies that
ker(φ) ≤ Z. This means that ker(φ) = mZ for some m ≥ 0. By the definition
of order of G, we have ker(φ) = 0 if o(g) =∞ and o(g)Z if o(g) <∞. Indeed,

ker(φ) = {n ∈ Z|gn = e}.

This m is precisely the order of g, unless if g has infinite order.

Lemma:

Suppose that (G, ·) is a finite group. Then for every g ∈ G,

o(g) | |G|.
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Lecture 10/31/2019 (Week 5 Thursday):

Recall: f : Z→ G, f(n) = gn is a group homomorphism. We have ker(f) = {0}
if and only if o(g) =∞. When o(g) <∞, we have

ker(f) = o(g)Z.

Lemma:

Suppose that o(g) <∞. Then

gn = gm ⇐⇒ n ≡ m (mod o(g)).

Proof. gn = gm ⇐⇒ gn · g−m = e ⇐⇒ gn−m = e ⇐⇒ f(n −m) = e. This
implies that n −m ∈ ker(f). From this we conclude that n −m ∈ o(g)Z, and
finally n ≡ m (mod o(g)). �

Proposition:

Suppose G = 〈g0〉 is a group with n elements. Then G ∼= Zn; this means
there is a group isomorphism f : Zn → G.

Proof. Let f([k]n) = gk0 . We need to show that f is well-defined. If [k1]n = [k2]n,
must we have gk1

0 = gk2
0 ? Now,

[k1]n = [k2]n =⇒ k1 ≡ k2 (mod n)

=⇒ gk1
0 = gk2

0

if o(g0) = n, by the previous lemma.

Claim: o(g0) = |〈g0〉| = n.

Proof of claim. Let o(g0) = m. We want to show m = n. Notice that none of
g0, g

2
0 , ..., g

m−1
0 equals e. This implies that gi0 6= gj0 if 0 ≤ i < j ≤ m− 1. If not,

then gi = gj =⇒ gj−i = e, for 0 < j − i ≤ m − 1. Hence we have found m
distinct elements in the group, so it must be that m ≤ n.

On the other hand, for every g ∈ G = 〈g0〉, we have g = gk0 for some inte-
ger k ∈ Z. Suppose q is the quotient and r is the remainder of k divided by m.
That is, k = mq + r, and 0 ≤ r < m. This implies that k ≡ r (mod m), and
furthermore gk0 = gr0. Hence g ∈ {g0

0 , g
1
0 , ..., g

m−1
0 }. Since g ∈ G was arbitrary,

the order of G cannot be greater than m. So n ≤ m. �
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We now show that f is surjective. We know that ∀g ∈ G, g = gk0 for k ∈ Z. But
this means that g = f([k]n). This shows that f is surjective.

f is also injective. Assume that

f([k1]n) = f([k2]n).

Then
gk1

0 = gk2
0 =⇒ k1 ≡ k2 (mod o(g))

=⇒ k1 ≡ k2 (mod n)

=⇒ [k1]n = [k2]n.

It remains to show that f is a homomorphism. Notice that

f([k1]n + [k2]n) = f([k1 + k2]n) = gk1+k2
0

gk1
0 · g

k2
0 = f([k1]n)f([k2]n).

This finishes the proof. �
Corollary:

(1) If G is generated by g, then the order of g must be the order of G.
(2) Also

G = {e, g, ..., go(g)−1}.

(3) G ∼= Zo(g).

Proposition:

Suppose o(g) = n <∞. Then o(gm) = n
gcd(n,m) .

Proof. (gm)k = e ⇐⇒ gmk = g0 ⇐⇒ mk ≡ 0 (mod n). This happens iff

n|mk ⇐⇒ n

gcd(n,m)

∣∣∣∣∣ m

gcd(n,m) · k.

Notice that also

gcd
(

n

gcd(n,m) ,
m

gcd(n,m)

)
= 1.

Combining the above observations, [n/ gcd(n,m)]|k. So the smallest positive k
such that (gm)k = e is n

gcd(n,m) . �

48



Corollary:

Suppose G = 〈g0〉 has n elements. Then

G =< gm0 >⇐⇒ gcd(n,m) = 1.

Proof. G =< gm0 > ⇐⇒ |G| = | < gm0 > | ⇐⇒ n = o(gm0 ) = o(g0)
gcd(n,m) . Since

o(g0) = n, for the above to hold we must have gcd(n,m) = 1. �

Example:

Z2×Z2 is not cyclic, because the order of any element is at most 2 (check).
Because, if this group were to be cyclic, then at least one element must
have order 4.

Example:

Symmetries of the real line with function composition form a group.
Notice that the composition of two reflections (say reflections about 0
and 1) is a translation. The conclusion is, even though both of these
symmetries are of finite order 2, the composition has infinite order.

Lemma:

Let a, b ∈ G with ab = ba. Assume that o(a) = n <∞, and o(b) = m <
∞. Then

o(ab) = lcm(m,n).

Proof. We need to find the smallest positive k such that (ab)k = e ⇐⇒ akbk =
e ⇐⇒ ak = b−k. This implies that ank = b−nk =⇒ e = b−nk. Hence m|nk,
and similarly amk = b−mk = e and n|mk. We have m|nk and n|mk if and only
if m

gcd(m,n) |
n

gcd(m,n)k, which implies that m
gcd(m,n) |k. Similarly n

gcd(m,n) |k. Since
gcd( m

gcd(m,n) ,
n

gcd(m,n) ) = 1, we have

mn

gcd(m,n)2 |k =⇒ lcm(m,n)
gcd(m,n) |k.

If we assume gcd(m,n) = 1, then lcm(m,n) = mn divides k.
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In summary, we have shown if gcd(m,n) = 1 and (ab)k = e, then mn|k. Notice
that (ab)mn = e. So mn|o(ab) and o(ab)|mn implies mn = o(ab). �

I was wondering why gcd(a, b) = 1 =⇒ lcm(a, b) = ab, but here is a more
general statement that answers my question:

Proposition:

We have
gcd(a, b)lcm(a, b) = ab.

Proof. Later.
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Lecture 11/5/2019 (Week 6 Tuesday):

Recall: Suppose G is a group and g ∈ G is of finite order. Then

|〈g〉| = o(g)

and
〈g〉 = {1, g, ..., gn−1}

where n = o(g).

Recall: Also remember that G ∼= Zn if G is a cyclic group of order n. In
particular, [a]n → ga0 is a well defined group isomorphism, if g0 is the generat-
ing element of G.

Recall: If g ∈ G has finite order, then

o(gm) = o(g)
gcd(o(g),m) .

Recall: gn = gm iff n ≡ m (mod o(g)). In particular, gn = 1 if and only
if o(g)|n.

Lemma:

Let G be a group, and a, b ∈ G with ab = ba. Let o(a) = n, o(b) = m.
Then

o(ab)|lcm(m,n)
lcm(m,n)
gcd(m,n)

∣∣∣o(ab).
In particular if gcd(m,n) = 1, then o(ab) = mn.

Proof. Let
l = lcm(m,n)

r = gcd(m,n).

Then write m = rm′ and n = rn′. This means that l = rm′n′. Now observe
that

(ab)l = albl since ab = ba.

o(a)|l =⇒ al = 1

o(b)|l =⇒ bl = 1.
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The three observations above imply that (ab)l = 1, and hence o(ab)|l. This
proves the first part of the lemma. Suppose that o(ab) = k. Then

(ab)k = 1 =⇒ akbk = 1

=⇒ ak = b−k (?)

(?)n =⇒ akn = b−kn

Also o(a)|kn =⇒ akn = 1.

Hence b−kn = 1, so m|kn. Now

(?)m =⇒ akm = b−km

o(b)| − km =⇒ b−km = 1 =⇒ akm = 1.

We conclude that n|km. Now

n|km =⇒ rn′|krm′

=⇒ n′|km′.

Now observe that gcd(m,n) = r =⇒ gcd(m/r, n/r) = 1 =⇒ gcd(m′, n′) = 1.
By Euclid’s lemma,

n′|k.

Now observing that m|kn =⇒ rm′|krn′

=⇒ m′|kn′.

Since we also have gcd(m′, n′) = 1 we have m′|k. Now using the fact that
gcd(m′, n′) = 1, we conclude that m′n′|k =⇒ (l/r)|k. �

Proposition:

Let σ ∈ Sn and σ = τ1τ2 · · · τm where τi’s are disjoint cycles, where the
length of τi is li. Then

o(σ) = lcm(l1, ..., lm).

Proof. Let k = o(σ) and s = lcm(l1, ..., lm). We first want to show k|s =⇒
k ≤ s. To show k|s, it suffices to show that the identity permutation equals the
below.

σs = (τ1 · · · τm)s

= τs1 · · · τsm.

For each τi we clearly have o(τi) = li. So this implies that τsi = id. Hence in
the above calculation we have σs = id =⇒ o(σ)|s.
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Now notice that Mτr
i
⊂ Mτi , and so τ r1 , ..., τ

r
m (they are not necessarily cy-

cles!) are disjoint. Notice that

id = σk = τk1 τ
k
2 · · · τkm.

Since τki are disjoint, we have

Mτk1 ···τkm = ∪mi=1Mτk
i

= ∅

where the last equality follows from the fact that id = σk = τk1 τ
k
2 · · · τkm. Then

=⇒ ∀i,Mτk
i

= ∅ =⇒ τki = id

=⇒ o(τi)|k =⇒ li|k =⇒ s|k.
Combining observations k = o(σ)|s and s|k, we conclude that k = s. �

Remark: (Note to myself) I was wondering about why li|k =⇒ s|k. A
rigorous proof might be cumbersome, but let me record my thought process
here. So if you think the implication isn’t true, then you probably were think-
ing that it is possible for the lcm of the li’s to be something greater than k, but
this doesn’t happen. For example, say

l1 = 5|k, l2 = 5|k, l3 = 6|k.

Then lcm(5, 5, 6) = lcm(5, 6) = 30. The key idea here is that the lcm only
depends on the li’s that are distinct, so if we know that li|k =⇒ li ≤ k,
then it cannot be the case that the lcm ends up to be something greater than
k, because the li that are distinct are necessary a subset of the prime factors
(counting multiplicities) of k.

Theorem:

Suppose that G = 〈g〉 is a cyclic group of order n. Then for any d|n, G
has a unique subgroup of order d. Furthermore, any subgroup of G is
one of those.

Theorem (reworded):

Suppose that G = 〈g〉 is a cyclic group of order n. Then if H is a
subgroup of G, then H = 〈gd〉 for some d|n. Conversely, if d|n, G has a
unique subgroup of order d, namely 〈gn/k〉.

Proof. (Existence) Suppose that d|n. Then

o(gm0 ) = o(g0)
gcd(o(g0),m) = |〈g0〉|

gcd(|〈g0〉|,m) = n

gcd(n,m) .
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So,
=⇒ o(gn/d0 ) = n

gcd(n, n/d) = n

n/d
= d

=⇒ |〈gn/d0 〉| = o(gn/d0 ) = d.

So < g
n/d
0 > is a subgroup of order d. Now we show that any subgroup of

G is cyclic. To prove this, recall that f : Z → 〈g0〉 given by f(n) = gn0 is a
group homomorphism. Let H be a subgroup of 〈g0〉. We claim that f−1(H) is
a subgroup of Z.

Why is this the case? First, 0 ∈ f−1(H) because f(0) = 1 ∈ H. Now if
m ∈ f−1(H) then

f(m) ∈ H =⇒ f(m)−1 ∈ H =⇒ f(−m) ∈ H

−m ∈ f−1(H).

Finally if m, k ∈ f−1(H), then f(m), f(k) ∈ H =⇒ f(m) · f(k) ∈ H

=⇒ f(m+ k) ∈ H =⇒ m+ k ∈ f−1(H).

We know that every subgroup of Z is of the form mZ. Hence f−1(H) = mZ.
Applying f to both sides, we get, since f is surjective, H = f(f−1(H)) =
f(mZ) =⇒ {gmk0 |k ∈ Z} =< gm0 >.

The second-to-last step is showing that if H is a subgroup of G, then |H|
∣∣∣n. We

prove this as follows. From the previous step, we know that

H =< gm0 >

for some m. Then
|H| = | < gm0 > |

= n

gcd(n,m) |n.

The final step is to show uniqueness: suppose H is a subgroup of order d, we
have to show that

H =< gn/d > .

We have already proved that H =< gm0 > for some m. So

|H| = d =⇒ d = n

gcd(n,m) =⇒ n

d
= gcd(n,m)

∃r, s ∈ Z, rn+ sm = n

d

=⇒ g
n/d
0 = grn+sm

0 = grn0 gsm0 = gsm0
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as o(g0) = n. Then

=⇒ g
n/d
0 = (gm0 )s ∈< gm0 >= H.

So < g
n/d
0 >⊂ H. Since | < g

n/d
0 > | = |H| = d and < g

n/d
0 >⊂ H, we deduce

that H =< g
n/d
0 >. �

Remark: The flowchart in this proof goes like this. First assume that G = 〈g0〉
is a cyclic group of order n. Then:
(1) Prove that d|n =⇒ there exists a subgroup of G of order d, namely
< g

n/d
0 >. Indeed,

o(gn/d0 ) = o(g0)
gcd(o(g0), n/d) = n

gcd(n, n/d) = d.

(2) (Only an intermediate step) Next, show that any subgroup H ≤ G is cyclic.
Indeed, H = f(mZ), so H is a cyclic group.
(3) Then show that H ≤ G =⇒ |H| divides n. From the previous inter-
mediate step, we know that H =< gm0 > for some m, which implies that
|H| = n

gcd(n,m) |n.
(4) Lastly show that any subgroup H ≤ G of order d must be < g

n/d
0 >. Write

H =< gm0 > for some m, and obtain
n

d
= gcd(n,m).

Argue that gn/d0 ∈ H, and thus < g
n/d
0 >⊂ H, but | < g

n/d
0 > | and H both

have order d, so they are the same set.

Example:

We have (R+, ·) ∼= (R,+). Indeed, taking ln : R+ → R, we have

ln(xy) = ln(x) + ln(y).

Natural log is a bijection because exp : R → R+ is the inverse function
of ln.

Example:

Is (R\{0}, ·) isomorphic to (R,+)? If f : R\{0} → R is a group isomor-
phism, then

f(−1)f(−1) = f((−1)2) = 0.

Contradiction since f(−1) = 0 = f(1).
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Lecture 11/7/2019 (Week 6 Thursday):

Theorem (Cayley):

If G is group, then G can be realized as a subgroup of a symmetric group.
That is, there is an injective group homomorphism G → SX (for some
set X). In fact we show that there is an injective group homomorphism
f : G→ SG.

Proof. We want to define f : G→ SG such that ∀g ∈ G, f(g) is a bijection.

f(g) : G→ G.

For g′ ∈ G, we define
f(g)(g′) = gg′.

We claim that f(g) is a bijection. We claim that f(g−1) is the inverse of f(g).
Indeed,

(f(g) ◦ f(g−1))(g′) = g(g−1g′) = g′

(f(g−1) ◦ f(g))(g′) = g−1(gg′) = g′.

Hence f(g) is indeed invertible, so it is a bijection. Now we check that f(g) is
a group homomorphism. We have for any g′ ∈ G

f(g1g2)(g′) = (g1g2)(g′)

(f(g1) ◦ f(g2))(g′) = g1(g2g
′).

Hence we conclude that the two functions f(g1g2) and f(g1) ◦ f(g2) are equal
to each other.

The last thing we need to show is that f is injective. Suppose that f(g1) = f(g2).
This means that ∀g′ ∈ G we have

f(g1)(g′) = f(g2)(g′) ⇐⇒ g1g
′ = g2g

′ =⇒ g1 = g2.

This is exactly what we wanted to show. �

Remark: So each g gives a permutation f(g) through f . So f is a func-
tion from G to another set of functions.

Corollary:

(Added by Brian) For any group G,

{f : G→ G|∃g s.t. ∀g′ ∈ G, f(g′) = gg′} ≤ SG
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Example:

Let G = {1, a, a2} (assume that a3 = 1). For the multiplication table we
have 

· 1 a a2

1 1 a a2

a a a2 1
a2 a2 1 a

 .

So with the notation above, f(1)(1) = 1, f(1)(a) = a, and f(1)(a2) = a2.

Example:

Let G = {1, ζ, ζ2} ⊂ C, the three roots of unity. Then we have

f(ζ)(1) = ζ

f(ζ)(ζ) = ζ2

f(ζ)(ζ2) = 1.

This is really nice because it gives us the second row in the following
permutation table: 

· 1 ζ ζ2

1 1 ζ ζ2

ζ ζ ζ2 1
ζ2 ζ2 1 ζ

 .

We see that f is an injection. We see that each of the functions
f(1), f(ζ), f(ζ2) are bijections G → G. It also isn’t too hard to ver-
ify that f is a group homomorphism.

Definition:

Let (G, ·) be a group. We define

Aut(G) = {θ : G→ G|θ is an automorphism}.

That is θ is a isomorphism from a group to itself.
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Lemma:

θ : G→ H is an isomorphism =⇒ θ−1 : H → G is an isomorphism.

Proof. θ−1 is invertible, so it is a bijection. We want to show

θ−1(h1h2) = θ−1(h1)θ−1(h2)

⇐⇒ h1h2 = θ(θ−1(h1)θ−1(h2))

= θ(θ−1(h1))θ(θ−1(h2)) = h1h2.

This proves that θ−1 is also a homomorphism. We conclude that θ−1 is an
isomorphism. �

Lemma:

Suppose that
G

θ→ H
ψ→ L

where θ and ψ are group homomorphisms. Then

ψ ◦ θ : G→ L

is also a group homomorphism.

Proof. We have
(ψ ◦ θ)(g1g2) = ψ(θ(g1))ψ(θ(g2))

= (ψ ◦ θ)(g1g2) = (ψ ◦ θ)(g1)(ψ ◦ θ)(g2).

This completes the proof. �

Proposition:

(Aut(G), ◦) is a group.

Proof. Let θ, ψ ∈ Aut(G). Then by the previous results, we know that ψ ◦θ and
θ◦ψ are both bijective and group homomorphisms. Hence ψ ◦θ, θ◦ψ ∈ Aut(G).

Also function composition is associative, the identity function is in Aut(G),
and the inverse of an automorphism is also an automorphism. �
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Recall: c : G → Aut(G), c(g) = cg, where cg : G → G, cg(g′) = gg′g−1.
We have proved that cg ∈ Aut(G). We have also seen that

cg1 ◦ cg2 = cg1g2 . ?

This means that c(g1) ◦ c(g2) = c(g1g2). Therefore c is a group homomorphism.

Recall: ker(c) = {g ∈ G|c(g) = id}. We have

cg = id ⇐⇒ cg(g′) = g′ ∀g′ ∈ G

⇐⇒ gg′g−1 = g′

⇐⇒ gg′ = g′g.

Hence ker(c) = Z(G).

Definition:

Im(c) is called the set of inner automorphisms; it is denoted by Inn(G).

Inn(G) = {cg : G→ G|cg(g′) = gg′g−1∀g′ ∈ G}

Definition:

Let (G, ·) be a group and H ≤ G a subgroup of G. For all g ∈ G, let

Hg := {hg|h ∈ H}

gH := {gh|h ∈ H}.

These are the right and left cosets, respectively.

Example:

Let G = R2. Let H = {(x, x)|x ∈ R}. Consider the coset H + (1, 0).
Then this gives the line y = x shifted one unit to the right. These kinds
of cosets partition the plane into parallel lines. Also notice that

H + (1, 1) = H.
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Example:

If G = Z, and H = nZ, then the cosets of H are

{nZ, 1 + nZ, ..., (n− 1) + nZ}.

Theorem:

{Hg|g ∈ G}

is a partition of G. (The left coset is also a partition of G).

Lemma:

g1 ∈ Hg2 ⇐⇒ Hg1 = Hg2.

Proof. (⇐= ) If Hg1 = Hg2, then since g1 = 1·g1 ∈ Hg1, we know g1 ∈ Hg2.

( =⇒ ) If g1 ∈ Hg2, then g1 = h0g2 for some h0 ∈ H. Hence g1g
−1
2 = h0 ∈ H.

We show both inclusions in Hg1 = Hg2.

(⊂) ∀h ∈ H, hg1 = h(h0g2) = (hh0)︸ ︷︷ ︸
∈H

g2 ∈ Hg2. We conclude that Hg1 ⊂ Hg2.

(⊃) ∀h ∈ H, hg2 = h(h−1
0 g1) = (hh−1

0 )︸ ︷︷ ︸
∈H

g1 ∈ Hg1. This is what we wanted

to prove. �

Lemma:

Hg1 = Hg2 if and only if g1g
−1
2 ∈ H. (Intuition: multiply both sides by

g−1
2 .

Proof. ( =⇒ ) Hg1 = Hg2 =⇒ g1 ∈ Hg2

=⇒ ∃h0 ∈ H, g1 = h0g2 =⇒ g1g
−1
2 = h0 ∈ H.

(⇐= ) g1g
−1
2 = h0 ∈ H

=⇒ g1 = h0g2 ∈ Hg2 =⇒ Hg1 = Hg2.
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Lemma:

Hg1 ∩Hg2 6= ∅ ⇐⇒ Hg1 = Hg2.

Proof. Reverse direction is left as exercise (but it is trivial). For the forward
direction, if Hg1 ∩Hg2 6= ∅.

=⇒ ∃g ∈ Hg1 ∩Hg2

=⇒ g ∈ Hg1 =⇒ Hg = Hg1 (first lemma)

g ∈ Hg2 =⇒ Hg = Hg2 =⇒ Hg = Hg2.

Hence Hg1 = Hg2. �
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Lecture 11/12/2019 (Week 7 Tuesday):

Recall: Let G be a group with H ≤ G. A left coset of H is gH = {gh|h ∈ H},
and a right coset of H is Hg = {hg|h ∈ H}.

Recall: We have proved last lecture that g1H = g2H if and only if g1 ∈ g2H if
and only if g−1

2 g1 ∈ H.

Proposition:

{gH|g ∈ G} is a partition of G (so are the collection of right cosets).

Proof. (Disjointness) Suppose that g1H ∩ g2H 6= ∅. We must show that g1H =
g2H. To start, suppose that g ∈ g1H ∩ g2H. Then g ∈ g1H =⇒ gH = g1H.
Similarly, since g ∈ g2H =⇒ gH = g2H. Hence g1H = g2H. We conclude
that if two left cosets intersect, then they are the same set.

(Union of all the cosets is G) We need to show that⋃
g∈G

gH = G.

Now ∀g ∈ G, notice that g = g · e ∈ gH ⊂
⋃
g′∈G g

′H. Hence G =
⋃
g′∈G g

′H
as we needed to show. �

Alternatively, define a equivalence relation by g1 ∼ g2 if g−1
2 g1 ∈ H. The only

interesting to show is that this is transitive. Well, if g−1
2 g1 ∈ H and g−1

3 g2 ∈ H,
then multiplying, we obtain g−1

3 g1 ∈ H. Then this equivalence relation will
partition G the desired way.

Definition:

A subgroup N is called a normal subgroup if for every g ∈ G, we have

gN = Ng.

Remark: If G is Abelian, then every subgroup of G is normal.
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Notation:

The set of left cosets is denoted by G/H, and the set of right cosets is
denoted by H\G. ?

The reason for the notation is because, taking the left cosets G/H for example,
you are looking at elements of the form gh.

Definition:

The index of H in G is |G/H|; this number is denoted by [G : H].

Example:

We have:

Z/nZ = {nZ, 1 + nZ, ..., (n− 1) + nZ} = Zn.

Proposition:

(a) |H| = |gH| = |Hg|; there are bijections between these sets.
(b) There exists a bijection G/H → H\G.
In particular |G/H| = |H\G|.

Proof. (a) A bijection H → gH is given by h 7→ gh. Similarly, H → Hg given
by h 7→ hg is a bijection. Indeed, if f : H → gH is given by f(h) = gh, then
f−1 : gH → H given by f−1(h′) = g−1h′ is its inverse function. Notice that
h′ ∈ gH implies that h′ = gh for some h ∈ H. And so g−1h′ = h ∈ H, and f−1

is thus well-defined. It is straightforward to verify that f ◦ f−1 = id and that
f−1 ◦ f = id. The other remaining case is handled similarly.

(b) A bijection is given by i : G/H → H\G, i(gH) = Hg−1. We need to
show that this is well-defined. That means we have to show that if g1H = g2H,
then Hg−1

1 = Hg−1
2 .

Recall: g1H = g2H if and only if g−1
1 g2 ∈ H. Similarly Hg′1 = Hg′2 if and

only if g′1g′−1
2 ∈ H.
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Hence if g1H = g2H, then g−1
1 g2 ∈ H. This happens iff

g−1
1 (g−1

2 )−1 ∈ H ⇐⇒ Hg−1
1 = Hg−1

2 .

Reading the implication in the forward direction, we have shown that i is well-
defined. Reading the implication in the backwards direction, we have shown
that i is injection.

It remains to show that i is surjective. An element of H\G is of the form
Hg for some g ∈ G, but we have i(g−1H) = Hg. �

The intuition for coming up with this function is the realization that

{gh|h ∈ H}
−1

→ {h−1g−1|h ∈ H} = Hg−1.

Theorem: (Lagrange)

Suppose G is a finite group, and H ≤ G. Then:

|G| = [G : H]|H|.

That is,
|G/H| = |G|/|H|.

Most importantly, the order of every subgroup of G divides the order of
G.

Proof. Suppose that [G : H] = m, and G/H = {g1H, ..., gmH}. So

G =
m⊔
i=1

giH

=⇒ |G| =
m∑
i=1
|giH| =

m∑
i=1
|H| = m|H|.

This proves the theorem. �

Corollary:

If G is a finite group, then for every g ∈ G, g|G| = 1. Equivalently,
o(g)||G|.

Proof. |〈g〉| = o(g). By Lagrange’s theorem, |〈g〉|||G|. Hence o(g)||G|. �
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Euler’s Theorem:

gcd(a, n) = 1 =⇒ aφ(n) ≡ 1 (mod n), where φ(n) = |{k ∈
[1, ..., n]| gcd(k, n) = 1}|

Proof. Let G = Z×n . Recall that

Z×n = {[r]n|1 ≤ r ≤ n, gcd(r, n) = 1}.

Then |G| = φ(n). Now

gcd(a, n) = 1 =⇒ [a]n ∈ G =⇒ [a]|G|n = [1]n.

But we then also have
[aφ(n)]n = [a]|G|n = [1]n

since |G| = φ(n). We conclude that aφ(n) ≡ 1 (mod n). �

Corollary:

(Fermat’s little theorem) If p is a prime, then

ap ≡ a (mod p).

Proof. Nothing to prove if a ≡ 0 (mod p). If a 6= 0 (mod p), then gcd(a, p) = 1.
By Euler’s theorem,

aφ(p) ≡ 1 (mod p) =⇒ ap−1 ≡ 1 (mod p) =⇒ ap ≡ a (mod p).

This proves the corollary. �

Proposition:

Suppose G is a group, and K ≤ H ≤ G are subgroups. Then [G : K] =
[G : H][H : K] if both sides are finite.

Remark: If |G| < ∞, then [G : K] = |G|/|K| and [G : H] = |G|/|H| and
[H : K] = |H|/|K|, and the equality is clear.

Proof. Suppose that
G/H = {giH|i ∈ I}
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H/K = {hjK|j ∈ J}

and giH 6= gi′H if i 6= i′ and hjK 6= hj′K if j 6= j′. We claim that

f : G/H ×H/K → G/K, f(giH,hjK) = gihjK

is a bijection. If this were true, then one side of the equality is finite if
and only if the other side is finite. Of course if this claim is true we are
done. We want to show that f is injective. Well we want to show that
f(giH,hjK) = f(gi′H,hj′K) implies (giH,hjK) = (gi′H,hj′K). The proof
will be done next time.

(Added by Brian) Now it’s 6:51 pm in 64 degrees and I can’t wait until next
time to see the proof. So let me try to prove it. We have

f(giH,hjK) = f(gi′H,hj′K) ⇐⇒ gihjK = gi′hj′K

⇐⇒ (gi′hj′)−1gihj ∈ K ⇐⇒ h−1
j′ g
−1
i′ gihj ∈ K ⊂ H

⇐⇒ g−1
i′ gi ∈ H ⇐⇒ giH = gi′H.

Also by the above we have

h−1
j′ hj ∈ K =⇒ hjK = hj′K.

Hence, f is an injection. To show that f is a surjection, simply observe that if
g ∈ G is given, then

f(gH, eK) = (ge)K = gK.

Hence [G : K] = [G : H][H : K]. �
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Lecture 11/14/2019 (Week 7 Thursday):

Recall the following proposition:

Proposition:

Suppose G is a group, and K ⊂ H ⊂ G are subgroups. Then

[G : K] = [G : H][H : K].

Proof. Let
G/H = {giH|i ∈ I}

H/K = {hjK|j ∈ J}

with giH 6= gi′H if i 6= i′, and hjK 6= hj′K if j 6= j′. We define

f : G/H ×H/K → G/K

by f(giH,hjK) = gihjK. We claim that f is a bijection. First, we show that f
is injective. Well,

gihjK = gi′hj′K =⇒ (gihj)−1(gi′hj′) ∈ K

=⇒ h−1
j g−1

i gi′hj′ ∈ K (?)

=⇒ g−1
i gi′ ∈ hjHh−1

j′ = H.

Hence giH = gi′H =⇒ i = i′ (??). By (?) and (??) we have h−1
j hj′ ∈ K =⇒

hjK = hj′K =⇒ j = j′. Hence f is injective.

Next we show that f is surjective. For all g ∈ G, we want to find i and j
such that gK = gihjK. Since gH ∈ G/H, for some i ∈ I we have gH = giH.
Hence g−1

i g ∈ H, and (g−1
i g)K ∈ H/K. So for some j ∈ J we have

g−1
i gK = hjK =⇒ gK = gihjK

as desired. Hence f is a bijection, and the proposition follows. �

Definition:

Suppose H is a subgroup of G. We say H is a normal subgroup if ∀g ∈ G,

gH = Hg.
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Lemma:

Suppose that H is a subgroup of G. Then the following are equivalent:
(1) H is a normal subgroup
(2) ∀g ∈ G, gHg−1 ⊂ H
(3) ∀g ∈ G, gHg−1 = H.

Proof. (1) =⇒ (2) and (3). If H is a normal subgroup, then ∀g ∈ G, gH = Hg,
and thus

(gH)g−1 = (Hg)g−1 = H.

Now we show that (2) =⇒ (3). ∀g ∈ G, gHg−1 ⊂ H (Fact a). And so for g−1

we obtain
g−1H(g−1)−1 ⊂ H =⇒ g−1Hg ⊂ H.

From here, you get that g(g−1Hg)g−1 ⊂ gHg−1, and so H ⊂ gHg−1 (Fact b).
Facts a and b together imply that ∀g ∈ G, gHg−1 = H.

Now we show that (3) =⇒ (1). ∀g ∈ G, gHg−1 = H

=⇒ (gHg−1)g = Hg

=⇒ gH = Hg

as desired. �

Lemma:

Suppose that φ : G1 → G2 is a group homomorphism. Then ker(φ) is a
normal subgroup.

Proof. We need to show that ∀g ∈ G, we have

g ker(φ)g−1 ⊂ ker(φ).

That is, we have to show that ∀g ∈ G, ∀x ∈ ker(φ), we have gxg−1 ∈ ker(φ).
Now

φ(gxg−1) = φ(g)φ(x)φ(g−1)

= φ(g)1G2φ(g)−1 = 1G2 .

Hence gxg−1 ∈ ker(φ). �

Remark: Im(φ) is not necessarily a normal subgroup.
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Example:

In S3 consider H = {id, (1 2)} ≤ S3. We claim that H is not a normal
subgroup. Notice that

(2 3)(1 2)(2 3) = (1 3) /∈ H.

This means that
(2 3)H(2 3)−1 6⊂ H.

Example:

(Added by Brian) Consider the group homomorphism φ : Z/2Z → S3
given by φ(1) = (1 2) and φ(0) = id. Then since

(1 3) (1 2)︸ ︷︷ ︸
∈Im(φ)

(1 3) = (2 3) /∈ Im(φ)

we conclude that Im(φ) is not a normal subgroup.

Example:

An C Sn. We prove this as follows. Define sgn(σ) = 1 if σ is even, and
−1 if σ is odd. Notice that sgn(σ) = (−1)nσ , where σ can be written as
a product of nσ transpositions. Now ∀σ1, σ2 ∈ Sn, write

σ1 = τ1 · · · τnσ1

σ2 = τ ′1 · · · τ ′nσ2

where τi and τ ′j are transpositions. Then

σ1σ2

has nσ1 + nσ2 transpositions. Hence

sgn(σ1)sgn(σ2) = (−1)nσ1 (−1)nσ2 = sgn(σ1σ2).

Hence sgn is a group homomorphism, and ker(sgn) = An is a normal
subgroup of Sn. �
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Definition:

We say that G is a simple group if G 6= {1} and N CG =⇒ N = {1},
or N = G.

Example:

[Sn : An] =? Well, observe that Sn = An ∪ (1 2)An. Why is this true?
Because if σ ∈ Sn is odd, then (1 2)σ is even, so (1 2)σ ∈ An, and
finally σ ∈ (1 2)An. If σ ∈ Sn is even, then σ ∈ An. Hence, we have
[Sn : An] = 2.

Example:

If H ≤ G and [G : H] = 2, then H CG. Indeed,

[G : H] = 2 =⇒ ∃g0 ∈ G

such that
G = H

⊔
g0H.

So ∀g ∈ G, gH = H or gH = g0H. So ∀g ∈ G\H, gH = g0H. So
G\H = g0H = gH if g ∈ G\H.

Also, there exists g1 ∈ G such that G = H
⊔
Hg1. By a similar

argument we have G\H = Hg1 = Hg, for all g ∈ G\H. Hence

∀g ∈ G\H, gH = G\H = Hg

∀g ∈ H, gH = H = Hg.

This completes the argument.

Example:

The center of G, Z(G)CG. We have to show that ∀g ∈ G, ∀x ∈ Z(G),
we have

gxg−1 ∈ Z(G).

But for all x ∈ Z(G), we have gxg−1 = gg−1x = x ∈ Z(G).
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Definition:

Suppose that H,K ≤ G. Let

HK = {hk|h ∈ H, k ∈ K}.

This is called the product set of H,K. HK is not necessarily a subgroup.

Lemma:

Suppose that H,K ≤ G. Then HK ≤ G if and only if HK = KH.

This is the midterm cutoff.
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Lecture 11/19/2019 (Week 8 Tuesday):

Recall: Suppose H and K are two subgroups of G. Define HK = {hk|h ∈
H, k ∈ K}.

Theorem:

HK is a subgroup if and only if HK = KH.

Proof. ( =⇒ ) Assume that HK is a subgroup. We show that HK ⊂ KH and
KH ⊂ HK. Now for all h ∈ H, k ∈ K, we have hk ∈ HK.

=⇒ (hk)−1 ∈ HK =⇒ k−1h−1 ∈ HK

Let k−1h−1 = h′k′ for some h′ ∈ H, k′ ∈ K

=⇒ hk = (h′k′)−1 = (k′)−1(h′)−1 ∈ KH.

Hence HK ⊂ KH. Now for all k ∈ K and h ∈ H, our goal is to show that
kh ∈ HK. It suffices to show that (kh)−1 = h−1k−1 ∈ HK

⇐= k−1 ∈ K,h−1 ∈ H.

Hence KH ⊂ HK.

( ⇐= ) We know 1 ∈ H ∩ K, hence 1 · 1 = 1 ∈ HK. Now for all h ∈ H
and k ∈ K, we have (hk)−1 = k−1h−1 ∈ KH = HK, so HK is closed under
taking inverses. Finally, let h1, h2 ∈ H and k1, k2 ∈ K. Then

(h1k1)(h2k2) = h1 (k1h2)︸ ︷︷ ︸
∈KH=HK

k2.

Writing k1h2 = h′k′ for some h′ ∈ H and k′ ∈ K, we have

h1(h′k′)k2 = (h1h
′)︸ ︷︷ ︸

∈H

(k′k2)︸ ︷︷ ︸
∈K

.

This completes the proof. �

Corollary:

Suppose H CG and K ≤ G. Then HK = KH ≤ G.
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Proof. We have HK = {hk|h ∈ H, k ∈ K} =⋃
k∈K

Hk =
⋃
k∈K

kH = KH.

Hence HK is a subgroup. Alternative proof: Notice that

hk = k(k−1hk) ∈ KH

as H is closed under conjugation. Similarly,

kh = (khk−1)k ∈ HK.

Corollary:

If H,K CG, then HK CG.

Proof. We have already proved that HK ≤ G. So it is enough to show that
∀g ∈ G,

g(HK)g−1 ⊂ HK.
For every h ∈ H and k ∈ K, we have

g(hk)g−1 = (ghg−1)︸ ︷︷ ︸
∈H

(gkg−1)︸ ︷︷ ︸
∈K

∈ HK

because H,K CG. Hence HK is a normal subgroup. �

Example:

(Quick example to foster understanding of cartesian product of groups)
Find the order of (1, 2) ∈ Z3 × Z∗5. Well, the neutral element is (0, 1),
and that (1, 2)n = (n, 2n). Set

(n, 2n) = (0, 1).

Notice that [n]3 = [0]3 =⇒ 3|n. Also we need 2n ≡ 1 (mod 5). Hence
2n ≡ 1 (mod 5) ⇐⇒ 4|n. We conclude that n = 12. Since this group
has order 12, this group is cyclic, and thus isomorphic to Z12.

Proposition:

(1) Suppose that H,K CG. Then H ∩K CG.
(2) Suppose that H,K CG with H ∩K = {1}. Then HK ∼= H ×K.
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Proof. (1) We have already proved that the intersection of two subgroups is a
subgroup. So it is enough to show that ∀g ∈ G, we have

g(H ∩K)g−1 ⊂ H ∩K.

Now if x ∈ H ∩K, then we know

x ∈ H =⇒ ∀g ∈ G, gxg−1 ∈ H

x ∈ K =⇒ ∀g ∈ G, gxg−1 ∈ K
since H,K are normal. Hence gxg−1 ∈ H ∩K and we conclude g(H ∩K)g−1 ⊂
H ∩K.

(2) Let [h, k] = hkh−1k−1 be the commutator of h and k. Notice that [h, k] =
1 ⇐⇒ hk = kh. Now we have

[h, k] = (hkh−1)︸ ︷︷ ︸
∈K;KCG

k−1 ∈ K as K ≤ G

h (kh−1k−1)︸ ︷︷ ︸
∈H;HCG

∈ H as H ≤ G.

We conclude that [h, k] ∈ H ∩ K = {1}. Hence ∀h ∈ H, k ∈ K, we have
[h, k] = 1 ⇐⇒ hk = kh.

Now define f : H × K → HK, f(h, k) := hk. We claim that this gives an
isomorphism.

(f is a homomorphism) f((h1, k1)(h2, k2)) ?= f(h1, k1)f(h2, k2). The LHS equals

f(h1h2, k1k2) = (h1h2)(k1k2).

The RHS equals

(h1k1)(h2k2) = h1(k1h2)k2 = h1h2k1k2︸ ︷︷ ︸
because [h2,k1]=1

.

(f is injective) Assume that f(h, k) = f(h′, k′). Then

=⇒ hk = h′k′ =⇒ (h′)−1h︸ ︷︷ ︸
∈H

= k′k−1︸ ︷︷ ︸
∈K

.

Hence (h′)−1h = e = k′k−1, and we conclude that h′ = h and k′ = k, and finally
(h, k) = (h′, k′).

(f is surjective) By definition of HK we have that

HK = {hk|h ∈ H, k ∈ K} = Im(f).
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Hence f is an isomorphism. �

Corollary:

If H,K CG and that gcd(|H|, |K|) = 1, then HK ∼= H ×K.

Proof. It is enough to show that H ∩K = {1}. By Lagrange’s theorem,

|H ∩K|
∣∣∣|H|

|H ∩K|
∣∣∣|K|.

From the above and the fact that gcd(|H|, |K|) = 1, we have |H ∩K| = 1. �

Chinese Remainder Theorem:

Suppose that gcd(n,m) = 1. Then

Zn × Zm ∼= Zmn.

Proof. Zmn has a subgroup H of order m. Zmn also has a subgroup K of order
n. Since Zmn is abelian, H,K C Zmn. Also gcd(|H|, |K|) = gcd(m,n) = 1.
Hence H ×K ∼= H +K. Any subgroup of a cyclic group is cyclic. So H and K
are cyclic. Now H ∼= Zm and K ∼= Zn. So

Zm × Zn ∼= H +K ≤ Zmn.

In particular |H+K| = mn, soH+K = Zmn. We conclude that Zm×Zn ∼= Zmn.
�

Remark: Compare this with the Chinese remainder theorem from earlier in
class. Explicitly, an isomorphism is given by f : Zmn → Zn × Zm, f([k]mn) =
([k]m, [k]n).

Example:

Let n = 2 and m = 3. We want to find a x ∈ Z2×3 = Z6 such that
x ≡ 0 (mod 2) and x ≡ 2 (mod 3). Setting f as in the above remark,
we see that if x = [2]6, then f([2]6) = ([0]2, [2]3) will work.
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Lecture 11/21/2019 (Week 8 Thursday):

Proposition:

Let H ≤ G. Define an operation on the left cosets of H as g1H · g2H =
g1g2H. Then this operation is well-defined if and only if H is a normal
subgroup.

Proof. ( =⇒ ) If the operation is well-defined, then

H · gH = gH.

Since hH = H and gH = gH, we also have

hH · gH = (hg)H.

Hence gH = (hg)H for every h ∈ H. Which means that for all h ∈ H, we have
g−1hg ∈ H. Hence ∀g ∈ G, g−1Hg ⊂ H, so H CG.

( ⇐= ) Suppose that g1H = g′1H and g2H = g′2H. We want to show that
(g1g2)H = (g′1g′2)H. Now

g1H = g′1H =⇒ g−1
1 g′1 ∈ H

g2H = g′2H =⇒ g−1
2 g′2 ∈ H.

Our goal is to show that (g1g2)−1(g′1g′2) ∈ H ⇐⇒ g−1
2 g−1

1 g′1g
′
2 ∈ H. Now

g−1
2 g−1

1 g′1g
′
2 = g−1

2 g′2︸ ︷︷ ︸
∈H

g′−1
2 g−1

1 g′1g
′
2︸ ︷︷ ︸

∈H;HCG

∈ H

as H is a subgroup. �

Theorem:

Suppose N CG. Then
(1) (G/N, ·) is a group
(2) π : G → G/N , π(g) = gN is a surjective group homomorphism and
we have ker(π) = N .

π is called the natural projection map from G to the factor group G/N .

Proof. (1) (Associativity) We have (g1N · g2N) · g3N

= (g1g2)g3N
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= g1(g2g3)N

= g1N · (g2N · g3N).

(2) (Neutral element) (gN) ·N = N · gN = gN .

(3) (Inverse element) (gN)(g−1N) = (gg−1)N = N = (g−1N)(gN).
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Lecture 11/26/2019 (Week 9 Tuesday):

Remark: There were 9 students who got ≥ 40, 6 students who got [36, 40).
These are the A range scores. Now, [26, 36) is B range. Any score lower than
16 is alarming. The first quartile is 38. The median is 30. The third quartile is
19.

Definition:

Let H ≤ G. Define an operation on the left cosets of H as (g1H)(g2H) :=
g1g2H. This operation is well-defined iff H CG.

Proposition:

Suppose N CG. Then
(a) (G/N, ·) is a group.
(b) π : G→ G/N given by π(g) = gN is a group homomorphism.
(c) π is surjective, and ker(π) = N .

Proof. (b) We have
π(g1g2) = (g1g2)N

= (g1N)(g2N) = π(g1)π(g2).

Hence π is a group homomorphism.

(c) We have Im(π) = {π(g)|g ∈ G}

= {gN |g ∈ G} = G/N.

Hence π is surjective. Now g ∈ ker(π) iff π(g) = N iff gN = N iff g ∈ N . Hence
ker(π) = N . �

Corollary:

In particular, N C G if and only if there is a group homomorphism
θ : G→ H such that N = ker(θ).
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Theorem (1st Isomorphism Theorem):

Suppose θ : G → H is a group homomorphism. Then θ : G/ ker(θ) →
Im(θ) given by θ(g ker(θ)) = θ(g) is an isomorphism. Hence G/ ker(θ) ∼=
Im(θ).

Proof. (θ is well-defined) Suppose that g1 ker(θ) = g2 ker(θ). Then g−1
1 g2 ∈

ker(θ). Hence
θ(g−1

1 g2) = e =⇒ θ(g1)−1θ(g2) = e.

From this we deduce that θ(g1) = θ(g2).

(θ is a group homomorphism) we have

θ((g1 ker θ)(g2 ker θ))) = θ(g1g2 ker(θ)) = θ(g1g2).

While,
θ(g1 ker θ)θ(g2 ker θ) = θ(g1)θ(g2).

Hence θ is a group homomorphism because θ is a group homomorphism.

(θ is surjective) ∀h ∈ Im(θ), there exists g ∈ G such that h = θ(g). Hence
h = θ(g ker θ), which implies h ∈ Im(θ). So θ is surjective.

(θ is injective) We have

θ(g1 ker θ) = θ(g2 ker θ) =⇒ θ(g1) = θ(g2) =⇒ θ(g1)−1θ(g2) = 1 =⇒ θ(g−1
1 g2) = 1

=⇒ g−1
1 g2 ∈ ker θ =⇒ g1 ker θ = g2 ker θ.

This completes the proof. �

We can summarize this information in a commuting diagram:
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Example:

Inn(G) ∼= G/Z(G). To prove this, recall that

c : G→ Aut(G)

c(g) = cg

(where cg(g′) = gg′g−1) is a group homomorphism. Also Im(c) =
Inn(G). And we have ker(c) = Z(G) because

g ∈ ker(c) ⇐⇒ c(g) = id

⇐⇒ ∀g′, cg(g′) = g′

∀g′ ∈ G, gg′g−1 = g′

⇐⇒ ∀g′ ∈ G, gg′ = g′g ⇐⇒ g ∈ Z(G).

So by the 1st isomorphism theorem G/ ker(c) ∼= Im(c). This implies that
G/Z(G) ∼= Inn(G) as desired.

Example:

If Z(G) = {1}, then G ∼= Inn(G). Indeed by the previous example,

G/Z(G) ∼= Inn(G).

Hence
Inn(G) ∼= G/{1} ∼= G.

The last isomorphic relation follows because π : G → G/{1} given by
π(g) = g{1} is an isomorphism.

Example (continued):

As a result,
Inn(Sn) ∼= Sn if n ≥ 3.
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Theorem (2nd Isomorphism Theorem):

Suppose G is a group and N CG, H ≤ G. Then

(HN)/N ∼= H/(H ∩N).

Corollary:

|HN | = |H||N |/|H ∩N |.

Proof. By the 2nd IT we have

|(HN)/N | = |H/(H ∩N)|.

Now by Lagrange’s theorem we have

|HN |/|N | = |H|/|H ∩N |.

Hence the result follows. �

Remark: This equality holds even if N is not normal.

Proof of Theorem. Consider f : H → (HN)/N given by f(h) = hN . Since
h ∈ H ⊂ HN , hN ∈ (HN)/N . Hence f is a well-defined function.

(f is a group homomorphism) We have

f(h1h2) = h1h2N = (h1N)(h2N) = f(h1)f(h2).

(Finding kernel of f) Now, h ∈ ker(f) ⇐⇒ f(h) = N ⇐⇒ hN = N ⇐⇒
h ∈ N . Hence h ∈ ker(f) ⇐⇒ h ∈ N ∩H. So ker(f) = N ∩H.

(Finding image of f) We have Im(f) = {f(h)|h ∈ H} = {hN |h ∈ H} ?= HN/N .
(Notice that NCG and H ≤ G, so we get HN ≤ G. Also NCHN . So (HN)/N
makes sense and it is a group.)

(f is onto) An element of (HN)/N is of the form (hn)N for some h ∈ H
and n ∈ N . However, notice that hnN = hN as h−1(hn) = n ∈ N . This
implies that hnN = f(h), so f is onto.

(Applying 1st IT) By the 1st isomorphism theorem, we have

H/ ker(f) ∼= Im(f)
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(with isomorphism given by h(ker f) 7→ f(h). Hence using previous results,

H/(H ∩N) ∼= (HN)/N.

The isomorphism is given by h(H ∩N) 7→ hN . �

Theorem (3rd Isomorphism Theorem):

Suppose N CG, H CG, N ≤ H. Then

(G/N)
(H/N)

∼= G/H.

Proof. Consider f : G/N → G/H given by f(gN) = gH.

(f is well defined) If g1N = g2N , then g−1
1 g2 ∈ N ⊂ H, so g−1

1 g2 ∈ H. This
implies that g1H = g2H.

(f is a group homomorphism) We have

f((g1N)(g2N)) = f(g1g2N) = g1g2H

= (g1H)(g2H) = f(g1N)f(g2N).

(Finding Im(f), and showing f is onto) We have

Im(f) = {f(gN)|g ∈ G} = {gH|g ∈ G} = G/H.

(Finding ker(f)) We have gN ∈ ker(f)

⇐⇒ f(gN) = H.

We will finish the proof next time.
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Lecture 12/3/2019 (Week 10 Tuesday):

Recall the following theorem:

Third Isomorphism Theorem:

H,K CG and K ≤ H implies that

G/K

H/K
∼= G/H.

Proof. Consider f : G/K → G/H given by f(gK) = gH. We have shown
that f is a well-defined onto group homomorphism. By the 1st IT, we know
that

G/K

ker(f)
∼= Im(f).

Now gK ∈ ker(f) ⇐⇒ f(gK) = H ⇐⇒ gH = H ⇐⇒ g ∈ H. Hence
gK ∈ ker(f) ⇐⇒ gK ∈ H/K. Hence H/K = ker(f). This proves the theo-
rem. �

Corollary:

By the 1st isomorphism theorem,

f : G/K
H/K

→ G/H

f((gK)H/K) = gH

is an isomorphism.

Recall: Consider subgroups of cyclic groups. Suppose Cn is a finite cyclic group
of order n. Then

d|n ⇐⇒ ∃! subgroup of order d.

If Cn = 〈g〉, then the unique subgroup of order d is 〈gn/d〉.
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Theorem (Correspondence Theorem):

Suppose that N C G. Then there is a bijection between the following
sets:

{subgroups of G/N} θ← {H|H ≤ G,N ⊂ H}

given by H/N θ← H. Moreover θ induces a bijection between

{normal subgroups of G/N} ← {H|H CG,N ⊂ H}.

Remark: If H is a normal subgroup in G, then H/N is a normal subgroup in
G/N , and vice versa.

Proof. Suppose H is a subgroup of G/N . Recall that π : G→ G/N , π(g) = gN
is an onto group homomorphism. Let H := π−1(H). (If H = H/N , then
gN ∈ H ⇐⇒ g ∈ H.)

We claim that H ≤ G. We check the following.
(1) Since H is a subgroup, it contains the identity. And the preimage of the
identity under a group homomorphism does contain the identity.
(2) If h ∈ H, then π(h) ∈ H. Since H is a subgroup, π(h)−1 ∈ H =⇒ π(h−1) ∈
H. Hence h−1 ∈ π−1(H).
(3) If h1, h2 ∈ H, then π(h1), π(h2) ∈ H. Hence

π(h1h2) = π(h1)π(h2) ∈ H

as desired.

Since π is onto, we have H = π(π−1(H)) = π(H) = {hN |h ∈ H} = H/N .

Notice that π−1(1 ·N) = N , so 1 ·N ∈ H. Hence N ⊂ π−1(H) =⇒ N ⊂ H.
This implies that θ is onto.

Next, θ is an injection. We want to show that if Hi ≤ G and N ⊂ Hi, then
θ(H1) = θ(H2) =⇒ H1 = H2. Now ∀h1 ∈ H1, (we know H1/N = H2/N) we
have h1N ∈ H2/N . This means that ∃h2 ∈ H2 such that h1N = h2N . Hence
h−1

2 h1 ∈ N ⊂ H2. Hence h1 ∈ H2. So H1 ⊂ H2. By a similar argument,
H2 ⊂ H1. Hence H1 = H2.

Quick remark: as part of the 3rd IT, if H CG, then θ(H)CG/N .

So it remains to show that if H/N CG/N for some N ⊂ H ≤ G, then H CG.
For al g ∈ G, we have to show that gHg−1 ⊂ H. Since H/N CG/N , we have

(gN)(H/N)(gN)−1 = H/N =⇒ π(g)π(H)π(g)−1 = H/N =⇒ π(gHg−1) = H/N.
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Since N ⊂ H, we have gNg−1 ⊂ gHg−1 =⇒ N ⊂ gHg−1 as N C G. Now
we have N ⊂ H, gHg−1 ≤ G, and π(H) = π(gHg−1). Hence by the first part
H = gHg−1.

Example:

We claim that Z/nZ ∼= Zn. Indeed, f : Z → Zn given by f(a) = [a]n is
an onto group homomorphism with ker(f) = nZ. Then we are done by
the first isomorphism theorem.

Example:

R/Z ∼= S1 = {z ∈ C
∣∣|z| = 1}. Indeed, if f : R → S1, f(x) = e2πix, then

ker(f) = Z. Then we are done again by the first isomorphism theorem.

Example:

Let a, b ∈ Z. Then (Z× Z)/〈(a, b)〉 is cyclic iff gcd(a, b) = 1.

( ⇐= ) For some r, s ∈ Z we have ar + bs = 1. We want to
show that (Z × Z)/〈(a, b)〉 ∼= Z. To this end, we want to find a map
f : Z × Z → Z that is onto, with ker(f) = 〈(a, b)〉. Now, any group
homomorphism f : Z× Z→ Z is of the form f(x, y) = cx+ dy for some
c, d ∈ Z (indeed f(x, y) = f(x(1, 0) + y(0, 1)) = xf(1, 0) + yf(0, 1)).
Will continue next time.
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Lecture 12/5/2019 (Week 10 Thursday):

Group Actions

Definition:

Suppose G is a group and X is a set. A function m : G × X → X is
called a group action (or we say G acts on X with m, Gy X), if
(1) ∀x ∈ X, m(1G, x) = x;
(2) m(g1,m(g2, x)) = m(g1g2, x).
We often write g · x instead.

Meta-example:

Let X be an object. Recall that Symm(X) is the set of a functions
X → X that are bijections and preserves properties of X. We have also
discussed that (Symm(X), ◦) is a group. We may define a group action
Symm(X) y X by f · x := f(x).

Example:

Consider Sn y {1, 2, ..., n} by σ · i = σ(i).

Example:

Consider GLn(R) y Rn by g · v := gv.

Example:

Consider SL2(R) y H given by(
a b
c d

)
· z = az + b

cz + d
.

(Where H = {z ∈ C|Im(z) > 0}). Side remark: these matrices don’t
change the length of a curve.
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Example:

Consider Gy G/H by left translations:

g · (g′H) = gg′H.

This is indeed an action because 1G · (g′H) = g′H, and that

g1 · (g2 · (g′H)) = g · ((g2g
′)H) = (g1(g2g

′))H

= (g1g2)g′H.

Example:

Consider Gy G by left translations:

g · g′ := gg′.

Example:

Consider Gy G by conjugation:

g · g′ := gg′g−1.

This is indeed an action because 1G · g′ = 1Gg′1−1
G = g′, and that g1 ·

(g2 · g′) = (g1g2)g′ (check).
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Example:

Consider G y X. Let V := {f : X → C|f is a function}. Then G acts
on V by g · f : X → C,

(g · f)(x) := f(g−1x).

This is a group action as

(1G · f)(x) = f(1−1
G x) = f(x).

And that

(g1 · (g2 · f))(x) = (g2 · f)(g−1
1 x) = f(g−1

2 g−1
1 x)

= f((g1g2)−1x) = ((g1g2) · f)(x).

We remark that V is a vector space. Notice also that this a linear action,
as

g · (f1 + f2) = g · f1 + g · f2.

Definition:

Suppose Gy X. The orbit of x ∈ X is G · x := {g · x|g ∈ G}.

Example:

Suppose that H ≤ G and H y G by left-translations: h · g = hg. Then
the orbit of g is Hg. We have seen that {Hg|g ∈ G} is a partition of G,
and we denoted this by H\G.

Definition:

Let Gy X. We let G\X = {G · x|x ∈ X}.

Theorem:

G\X is a partition of X.
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Lemma:

TFAE:

(1) G · x = G · y
(2) y ∈ G · x
(3) G · x ∩G · y 6= ∅.

Proof. (1) =⇒ (2) since y = 1G · y ∈ G · y = G · x. Now (2) =⇒ (1) because

y ∈ G · x =⇒ y = g0 · x for some g0 ∈ G.

Now G · y ⊂ G · x because ∀g ∈ G, g · y = g · (g0 · x) = (gg0) · x ∈ Gx. Also
g−1

0 · y = g−1
0 · (g0 · x) = (g−1

0 g0) · x = 1G · x = x. So by a similarly argument
G · x ⊂ G · y. Hence G · x = G · y.

(1) =⇒ (3) because x ∈ G · x = G · y implies that x ∈ Gx ∩Gy

(3) =⇒ (1) because if z ∈ G · x ∩ G · y, then since z ∈ G · x, G · z = G · x.
Similarly G · z = G · y. �

Proof of Theorem. We have already proved that distinct orbits are disjoint.
So it remains to show that ⋃

x∈X
G · x = X

but ∀x ∈ X, x ∈ G · x. Hence x ∈
⋃
x′∈X G · x′. �

Definition:

Let G y X. For all x ∈ X, we define Gx := {g ∈ G|g · x = x}. This is
called the stabilizer of X.

Lemma:

Suppose that Gy X. Then for all p ∈ X, Gp is a subgroup.

Proof. We have 1G · p = p =⇒ 1G ∈ Gp. Also if g ∈ Gp, then g · p = p =⇒
g−1 · p = p. Finally if g1, g2 ∈ Gp, then g1 · (g2 · p) = g1 · p = p = (g1g2)p. Hence
g1g2 ∈ Gp. �
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The Orbit-Stabilizer Theorem:

Let Gy X. Then θ : G/Gp → G · p given by gGp 7→ g · p is a bijection.
In particular, [G : Gp] = |G · p|.

Proof.

(θ is well-defined) g1Gp = g2Gp implies that g2 = g1g for some g ∈ Gp. So

g2 · p = (g1g) · p = g1 · (g · p) = g1 · p.

(onto) We have G · p = {g · p|g ∈ G} = {θ(gGp)|g ∈ G} = Im(θ).

(one-to-one) θ(g1Gp) = θ(g2Gp) =⇒ g1p = g2p =⇒ p = g−1g2 · p. Hence
g−1g2 ∈ Gp, which suffices to show that g1Gp = g2Gp. �

Example:

Consider Gy G by conjugation. Then the orbit of g equals {g′gg′−1|g′ ∈
G}, which is called the conjugacy class of g. We denote this by Cl(g).
Now the stabilizer group of g is {g′ ∈ G|g′gg′−1 = g} = CG(g). Hence
by the Orbit-Stabilizer theorem,

|Cl(g)|︸ ︷︷ ︸
|G·p|

= [G : CG(g)]

Example:

We have |Cl(g)| = 1 ⇐⇒ CG(g) = G ⇐⇒ g ∈ Z(G). Suppose
{g1, ..., gt} are representatives from conjugacy classes that have at least
2 elements. Then

|G| = |Z(G)|+
t∑
i=1
|Cl(gi)|

= |Z(G)|+
t∑
i=1

[G : CG(gi)].

This is the class equation.
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Thereom:

If |G| = pn, where p is a prime and G is a group, then Z(G) 6= {e} and
that |Z(G)| ≥ p.

Proof. By the class equation,

|G| = |Z(G)|+
t∑
i=1

[G : CG(gi)]

and that the [G : CG(gi)] is not one. Therefore by Lagrange’s theorem, [G :
CG(gi)] = pni =⇒ p|[G : CG(gi)]. By the modding the class equation by p,

0 ≡ |Z(G)| (mod p).

Hence p||Z(G)|, so 1 ≤ |Z(G)|, and moreover |Z(G)| ≥ p. �

91


