Lecture 27: Cauchy and $p q$
Wednesday, December 10, 2014
12:15 PM
Let p and q be primes, $p<q, p \not p q-1$. Let G be a finite group.

$$
\left.\begin{array}{r}
|G|=p q \quad \\
\exists N \unlhd G,|N|=q
\end{array}\right\} \Rightarrow G \simeq \mathbb{Z}_{p q}
$$

Remark 1. The assumption of existence of N is NOT needed. Using Sylow theorems, one can prove this.
2. Whenever we are asked to show $G \simeq \mathbb{Z}_{n}$, we need to show that G is cyclic. Since we have proved that a cyclic group of size is isomorphic to \mathbb{Z}_{n}.
3. To show a group of size n is cyclic, we have to find an element of order \underline{n}.

Pf. Let $e \neq b \in N \Rightarrow a(b) \neq 1$ and $o(b)||N|$ (by Lagrange)
$\Rightarrow o(b)=q \quad$ (as q is prime)

$$
\Rightarrow|\langle b\rangle|=o(b)=q=|N| \Longrightarrow\langle b\rangle=N \unlhd G .
$$

By Cauchy's theorem, $\exists a \in G, \quad o(a)=p$.
. If we show that $a b=b a$, then since $\operatorname{gcd}(o(a), o(b))=1$,

$$
o(a b)=o(a) o(b)=p q
$$

which implies G is cyclic. And so $G \simeq \mathbb{Z}_{P q}$.

$$
\langle b\rangle \pm G \Rightarrow \exists i, \quad a b a^{-1}=b^{i},
$$

$$
0 \leq i \leq q-1
$$

And $i \neq 0$ as otherwise $a b a^{-1}=e \Rightarrow b=a^{-1} a=e$ which is a contradiction.

$$
\begin{aligned}
a b^{j} a^{-1} & =\underbrace{a b a^{-1} \cdot a b a^{-1} \cdot \cdots a b a^{-1}}_{a^{j \text { times }}}=b^{i} \cdots \cdot b^{i} \\
& =b^{i \cdots} \cdot \\
a^{k} b a^{-k} & =a^{k-1}\left(a b a^{-1}\right) a^{-(k-1)} \\
& =a^{k-1} b^{i} a^{-(k-1)} \\
& =\left(a^{k-1} b a^{-(k-1)}\right)^{i} \\
& =b^{\left(2^{k}\right)}
\end{aligned}
$$

repeating

$$
\Rightarrow b=a^{P} b a^{-P}=b^{i^{P}}
$$

Recall. $\quad g^{l}=g^{k} \Leftrightarrow l \equiv k(\bmod \circ(g))$.

$$
\begin{aligned}
& \Rightarrow 1 \equiv i^{p}(\bmod \circ(b)) \quad \Rightarrow \quad[i]_{q}^{p}=[1]_{q} \\
& \Rightarrow \quad o\left([i]_{q}\right) / p \quad \text { in } \mathbb{Z}_{q}^{x}
\end{aligned}
$$

\Rightarrow either $\circ\left([i]_{q}\right)=1$ or $\circ\left([i]_{q}\right)=p$.
On the other hand $o\left(\left[i^{i}\right]_{q}\right)\left|\left|\mathbb{Z}_{q}^{x}\right|\right.$ by Lagrange
Recall $\cdot \mathbb{Z}_{n}^{x}=$ the group of units

$$
=\left\{[a]_{n} \mid \operatorname{gcd}(a, n)=1\right\}
$$

- $\left|\mathbb{Z}_{n}^{x}\right|=\varphi(n) \quad$ and $\varphi(q)=q-1$.

Since $p \nmid q-1, \circ\left([i]_{q}\right)=1 \Rightarrow[i]_{q}=[1]_{q}$
$\Rightarrow i=1 \Rightarrow a b=b a$ and we are done.

