Lecture 26 : Cauchy's theorem and p-groups.
Sunday, December 07, 2014
9:20 PM
Recall. $G \curvearrowright X \Rightarrow \forall x_{0} \in X, G / G_{x_{0}} \longrightarrow O\left(x_{0}\right)$

$$
g G_{x_{0}} \longmapsto g \cdot x_{0}
$$

is a (well-defined) bijection.

$$
\begin{aligned}
& \Rightarrow\left|O\left(x_{0}\right)\right|=\left[G_{:}: G_{x_{0}}\right] \\
& \Rightarrow|X|=\sum_{O_{(x) \in}}|O(x)|=\left|X^{G}\right|+\sum_{O_{(x \in}{\underset{G}{G}}_{X}^{X}}\left[G: G_{x}\right]
\end{aligned}
$$

where $X^{G}:=\{x \in X \mid \forall g \in G, g \cdot x=x\} x^{x \notin X^{G}}$
The. If $|P|=p^{n}$ and $P \curvearrowright X$, then

$$
|x| \equiv\left|x^{P}\right| \quad(\bmod p)
$$

Pf. $x \notin X^{P} \Rightarrow \quad P_{\neq} P_{x}$

$$
\Rightarrow\left[P_{i} P_{x}\right] \neq 1 \text { or }\left[P: P_{x}\right]\left||P|=p^{n}\right.
$$

$$
\Rightarrow \quad\left[P: P_{x}\right]=P^{k} \quad \text { where } \quad 1 \leq k \leq n
$$

$$
\Rightarrow P\left[\left[P: P_{x}\right]\right.
$$

$$
|x|=\left|x^{P}\right|+\sum_{x \in x^{G}}\left[P: P_{x}\right] \stackrel{P}{\equiv}\left|x^{P}\right| .
$$

The. Let P be a group. Suppose $|P|=p^{n} \neq 1$.

$$
\Longrightarrow Z(P) \neq\{e\} .
$$

Pf. Let $P \curvearrowright P$ by conjugation, ie. $g \cdot g^{\prime}:=g g^{\prime} g^{-1}$.
\Rightarrow The set of fixed points of this action

$$
\begin{aligned}
& \left\{g^{\prime} \in P \mid \forall g \in P, g \cdot g^{\prime}=g^{\prime}\right\}=\left\{g^{\prime} \in P \mid \forall g \in P, g g^{\prime} g^{-1}=g^{\prime}\right\} \\
= & \left\{g^{\prime} \in P \mid \forall g \in P, \quad g g^{\prime}=g^{\prime} g\right\}=Z(P)
\end{aligned}
$$

By the previous theorem $|P| \equiv|Z(p)|(\bmod p)$

$$
\left.\begin{array}{rl}
\Rightarrow & p||Z(P)| \\
& e \in Z(P)
\end{array}\right\} \Rightarrow P \leq|Z(P)| \Rightarrow Z(P) \neq\{e\}
$$

Cauchy's theorem Suppose G is a finite group and $p||G|$ where p is prime. Then $\exists g \in G, o(g)=p$.

Cor. Suppose G is a finite group and it is a p-group, i.e. $\forall g \in G, o(g)=p^{m}$ for some $m \in \mathbb{Z}^{\geq 0}$. Then

$$
|G|=p^{n} \quad \text { for some } n \in \mathbb{Z} \text {. }
$$

Pf. If $|G|$ is NOT a power of p, \exists a prime $p^{\prime} \neq p$ that divides
$|G|$. So by Cauchy's theorem $\exists g \in G, o(g)=p^{\prime}$, which
contradicts our assumption that G is a p-group.
Pf of Cauchy's theorem
Let $X=\left\{\left(g_{1}, g_{2}, \cdots, g_{p}\right) \in G x \cdots \times G \mid \quad g_{1} \cdot g_{2} \cdot \cdots g_{p}=e\right\}$.
So $\underset{p-1 \text { times }}{G \times \cdots \times G} \longrightarrow X,\left(g_{1}, \ldots, g_{p-1}\right) \longmapsto\left(g_{1}, \cdots, g_{p-1},\left(g_{i} \cdots \cdot g_{p-1}\right)^{-1}\right)$
is a bijection. In particular, $|X|=|G|^{P-1}$. Since $p||G|$,
$p||x|$.
Let $\mathbb{Z}_{p} \oslash x,[i] \cdot\left(g_{1}, \ldots, g_{p}\right):=\left(g_{i+1}, \ldots, g_{p}, g_{1}, \ldots, g_{i}\right)$.
well-defined. $\quad g_{1} \cdots \cdot g_{p}=e \Rightarrow\left(g_{1} \cdots \cdot g_{i}\right)=\left(g_{i+1} \cdots \cdots g_{p}\right)^{-1}$

$$
\Rightarrow\left(g_{i+1} \cdots g_{p}\right)\left(g_{i} \cdots g_{i}\right)=e .
$$

It is clear that it satisfies the properties of an action.
So by the above theorem $|X| \stackrel{P}{\equiv}$ The set of fixed pts|
$\Rightarrow p|\mid$ The set of fixed $p t s|=$

$$
|\{(g, \cdots, g) \mid \underbrace{g \cdots \cdots g}_{p \text {-times }}=e\}|=\left|\left\{g \in G \mid g^{p}=e\right\}\right|
$$

Since $e^{p}=e$, this set has at least one element. Thus
it has at least p elements. Any $g \neq e$ in this set has order p.

