Lecture 21: group homomorphism.
Friday, November 21, 2014
10:24 AM
Def. $\phi: G_{1} \rightarrow G_{2}$ is called a group homomorphism

$$
\text { if } \forall a, b \in G_{1}, \quad \phi(a b)=\phi(a) \phi(b) \text {. }
$$

Examples that we have seen

$$
\begin{aligned}
& \pi_{n}: \mathbb{Z} \longrightarrow \mathbb{Z}_{n}, \quad \pi_{n}(a):=[a]_{n} \\
& \cdot \pi_{n, m}: \mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{m}, \text { if } m / n, \quad \pi_{n, m}\left([a]_{n}\right)=[a]_{m} . \\
& \mathbb{Z}_{m n} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n} \text { if } \operatorname{gcd}(m, n)
\end{aligned}
$$

[a] $]_{m n} \mapsto\left([a]_{m}[a]_{n}\right)$ is a group homomorphism which is also a bijection.
. $\mathbb{Z}_{0(g)} \longrightarrow\langle g\rangle \quad$ is a bijection which is $[a]_{O(g)} \longmapsto g^{a}$ also a group homomorphism.

$$
\begin{aligned}
G \cap X \Rightarrow & \rho: G \rightarrow S_{X} \\
& \rho(g)(x):=g \cdot x
\end{aligned}
$$

Def. A group homomorphism $\theta$ is called a monomorphism if it is $1-1 . \theta$ is called an eximorphism if it
is onto. $\theta$ is called an isomorphism if $\theta$ is a bijection.

- $\pi_{n}$ is an epimorphism
- $\pi_{n, m}$ is an epimorphism. It is an isomorphism if and only if $n=m$.
- Any cyclic group of order $n$ is isomorphic to $\mathbb{Z}_{n}$. - $\mathbb{Z}_{m n}$ is isomorphic to $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ if $\operatorname{gcd}(m, n)=1$.
- sgn: $S_{n} \longrightarrow\{ \pm 1\}$ is an epimorphism if $n \geq 2$.

Def. Let $\phi: G \rightarrow H$ be a group homomorphism.

$$
\text { Image of } \phi=\operatorname{lm}(\phi)=\{\phi(g) \mid g \in G\} \subseteq H
$$

And kernel of $\phi=\operatorname{ker}(\phi)=\{g \in G \mid \phi(g)=e\} \subseteq G$.

