In the previous lecture we defined

$$
\mathbb{Z}_{n}:=\{n \mathbb{Z}, n \mathbb{Z}+1, \cdots, n \mathbb{Z}+(n-1)\} .
$$

For any integer a let $[a]_{n}:=n \mathbb{Z}+a$.
Lemma. The following properties are equivalent:
(i) $[a]_{n}=[b]_{n}$.
(ii) $[a]_{n} \cap[b]_{n} \neq \varnothing$.
(iii) $a \stackrel{n}{\equiv} b$.

In particular for any $x \in[a]_{n}$ we have $[x]_{n}=[a]_{n}$. Def. An element of $[a]_{n}$ is called a representative of $[a]_{n}$.
$\underline{L \text { Lemma }}\left\{\begin{array}{l}{[a]_{n}+[b]_{n}:=[a+b]_{n}} \\ {[a]_{n} \cdot[b]_{n}:=[a \cdot b]_{n}}\end{array}\right.$ are well-defined; i.e. it does NOT depend on the choice of representatives a and b.

Pf. $\left.\left[a_{1}\right]_{\ldots}=\left[a_{2}\right] \Rightarrow a_{1} \stackrel{n}{\equiv} a_{2}\right\} \Rightarrow\left\{a_{1}+b_{1} \stackrel{n}{\equiv} a_{2}+b_{2}\right.$

Pf. $\left.\begin{array}{rl}{\left[a_{1}\right]_{n}} & =\left[a_{2}\right]_{n} \Rightarrow a_{1} \stackrel{n}{\equiv} a_{2} \\ {\left[b_{1}\right]_{n}} & =\left[b_{2}\right]_{n} \Rightarrow b_{1} \stackrel{n}{\equiv} b_{2}\end{array}\right\} \Rightarrow\left\{\begin{array}{l}a_{1}+b_{1} \stackrel{n}{\equiv} a_{2}+b_{2} \\ a_{1} \cdot b_{1}\end{array}\right.$

$$
\Rightarrow\left\{\begin{array}{l}
{\left[a_{1}+b_{1}\right]_{n}=\left[a_{2}+b_{2}\right]_{n}} \\
{\left[a_{1} b_{1}\right]_{n}=\left[a_{2} b_{2}\right]_{n}}
\end{array}\right.
$$

You have to be extremely careful when you are working with representatives.

Exp. Is $[a]_{3} \mapsto[a]_{2}$ a well-defined map from \mathbb{Z}_{3} to \mathbb{Z}_{2} ?

Solution. $[0]_{3}=[3]_{3}$, but $[0]_{2} \neq[3]_{2}$. So it is NOT a well-defined map.
(Q) For what positive integers m and n, the above defined map is well-defined:

$$
P_{n m}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}, P_{n m}\left([a]_{n}\right)=[a]_{m} .
$$

Solution. If it is well-defined, then

$$
[0]_{n}=[n]_{n} \Rightarrow[0]_{m}=[n]_{m}
$$

$$
\begin{aligned}
& \Rightarrow n \stackrel{m}{\equiv 0} \\
& \Rightarrow m \mid n
\end{aligned}
$$

If m / n, then we claim that $P_{n, m}$ is well-defined.

$$
\begin{aligned}
{\left[a_{1}\right]_{n}=\left[a_{2}\right]_{n} \Rightarrow } & a_{1} \stackrel{n}{=} a_{2} \\
\Rightarrow & n \mid a_{1}-a_{2} \\
& m \mid n \\
\Rightarrow & m \mid a_{1}-a_{2} \\
\Rightarrow & \stackrel{m}{=} a_{2} \\
\Rightarrow & {\left[a_{1}\right]_{m}=\left[a_{2}\right]_{m} }
\end{aligned}
$$

Chinese Remainder Theorem
Let m and n be two relatively prime positive integers. Then $\mathbb{Z}_{m n} \longrightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n}$

$$
[a]_{m n} \longmapsto\left([a]_{m},[a]_{n}\right)
$$

is a bijection.
Pf. (1) It is well-defined:

$$
[a]_{m n} \longmapsto[a]_{m} \text { and }[a]_{m n} \mapsto[a]_{n}
$$ are well-defined as $m / m n$ and $n / m n$.

(2) It is $1-1$.

$$
\left.\begin{array}{l}
\left([a]_{m},[a]_{n}\right)=\left([b]_{m},[b]_{n}\right) \\
\Rightarrow a \stackrel{m}{\equiv} b \text { and } a \stackrel{n}{\equiv} b \\
\Rightarrow \quad m \mid a-b\} \Longrightarrow \operatorname{lcm}(m, n) \mid a-b \\
\\
\Rightarrow n \mid a-b \\
\Rightarrow \operatorname{gcd}(m, n)=1 \Rightarrow \operatorname{lcm}(m, n)=m n
\end{array}\right\}
$$

(3) $\left|\mathbb{Z}_{m n}\right|=m n=\left|\mathbb{Z}_{m} \times \mathbb{Z}_{n}\right|$
f is $1-1$$\Rightarrow f$ is also onto

Cor. Let m and n be two relatively prime positive integers. Then for any integers a and b

$$
\left\{\begin{array}{l}
x \equiv a(\bmod n) \\
x \equiv b(\bmod m)
\end{array}\right.
$$

has a unique solution modulo mn .
Pf. Since the above map is a bijection, for any
a and $b, \exists![x]_{m n} \in \mathbb{Z}_{m n}$ st.

$$
\begin{aligned}
& \left([x]_{n},[x]_{m}\right)=\left([a]_{n},[b]_{m}\right) \\
\Rightarrow & \left\{\begin{array}{l}
x \equiv a(\bmod n) \\
x \equiv b(\bmod m) .
\end{array}\right.
\end{aligned}
$$

How can we find such a solution?
Suppose $\left(\left[x_{1}\right]_{n},\left[x_{1}\right]_{m}\right)=\left([1]_{n},[0]_{m}\right)$
and $\left(\left[x_{2}\right]_{n},\left[x_{2}\right]_{m}\right)=\left([0]_{n},[1]_{m}\right)$

$$
\begin{aligned}
\Rightarrow & \left(\left[a x_{1}+b x_{2}\right]_{n},\left[a x_{1}+b x_{2}\right]_{m}\right) \\
& =\left([a]_{n} \frac{\left[x_{1}\right]_{n}}{[1]_{n}}+[b]_{n}{\underset{\sim x}{2}}_{[0]_{n}}^{[0]},[a]_{m} \underset{\sim}{\left[x_{1}\right]_{m}}+[b]_{m}^{\left[x_{2}\right]_{m}}\right) \\
& =\left([a]_{n},[b]_{m}\right) .
\end{aligned}
$$

So it is enough to find x_{1} and x_{2}.

$$
\Rightarrow\left\{\begin{array}{l}
x_{1} \stackrel{n}{\equiv} 1 \\
x_{1} \stackrel{m}{\equiv} 0 \quad x_{1}=m x
\end{array} \quad \text { for some } \begin{array}{l}
\text { integer } x .
\end{array}\right.
$$

So we need to solve
$m x \stackrel{n}{\equiv} 1$; alternatively $[m]_{n}[x]_{n}=[1]_{n}$.
Def. We say $[a]_{n}$ is a unit in \mathbb{Z}_{n} if

$$
\exists\left[a^{\prime}\right]_{n} \in \mathbb{Z}_{n} \text { set. }[a]_{n}\left[a^{\prime}\right]_{n}=[1]_{n} .
$$

Corollary $[m]_{n}$ is a unit in $\mathbb{Z}_{n} \Leftrightarrow \operatorname{gcd}(m, n)=1$.
Pf. $[(\Leftrightarrow)$ Pf 1 by CRT we know the above equation has a solution.]

$$
\begin{aligned}
& \exists x, \quad[m]_{n}[x]_{n}=[1]_{n} \Longleftrightarrow \exists x, m x \stackrel{n}{\equiv} 1 \\
\Longleftrightarrow & \exists x, y \in \mathbb{Z}, \quad m x-1=n y \\
\Longleftrightarrow & \exists x, y \in \mathbb{Z}, \quad m x+n y=1 \\
\Longleftrightarrow & \operatorname{gcd}(m, n)=1 .
\end{aligned}
$$

One can use Euclid's algorithm to find g.c.d. and a solution to $a x+b y=\operatorname{gcd}(a, b)$ in an efficient way. Read it in your book.

What are the solutions of linear equations in \mathbb{Z}_{n} ?

$$
[a]_{n}[x]_{n}=[b]_{n} \Longleftrightarrow a x \stackrel{n}{\equiv} b
$$

It has a solution $\Longleftrightarrow \exists x, y \in \mathbb{Z}, \quad a x-b=n y$

$$
\begin{aligned}
& \Longleftrightarrow \exists x, y \in \mathbb{Z}, b=a x-n y \\
& \Leftrightarrow b \in a \mathbb{Z}+n \mathbb{Z}=\operatorname{gcd}(a, n) \mathbb{Z} \\
& \Leftrightarrow \operatorname{gcd}(a, n) \mid b .
\end{aligned}
$$

Proposition. $[a]_{n}[x]_{n}=[b]_{n}$ has a solution if and only if $\operatorname{gcd}(a, n) \mid b$.

How many solutions does it have?
Exp. $[6]_{8}[x]_{8}=[2]_{8} \Longleftrightarrow 6 x \stackrel{8}{\equiv} 2$
(it has a solution as $\operatorname{gcd}(6,8)=2 \mid 2$.)

$$
\begin{aligned}
& \Longleftrightarrow \quad \exists y \in \mathbb{Z}, \quad 8 y=6 x-2 \\
& \Longleftrightarrow \exists y \in \mathbb{Z}, \quad 4 y=3 x-1 \\
& \Longleftrightarrow \quad 3 x \stackrel{1}{\equiv} 1 \\
& \Longleftrightarrow \quad x \stackrel{4}{\equiv}-1 .
\end{aligned}
$$

$\Leftrightarrow \quad x=4 k-1 \quad$ for some integer k

$$
\Longleftrightarrow \quad x \stackrel{8}{=}-1 \text { or } 3
$$

$$
\Longleftrightarrow \quad[x]_{8}=[1]_{8} \text { or }[3]_{8}
$$

it has two solutions.
Proposition (i) $[a]_{n}[x]_{n}=[b]_{n}$ has a solution if and only if $\operatorname{gcd}(a, n) \mid b$.
(ii) If $d=\operatorname{gcd}(a, n) \mid b$, then $[a]_{n}[x]_{n}=[b]_{n}$ has exactly \underline{d} solutions in \mathbb{Z}_{n}.
(Modulo n / d, it has a unique solution.)
Pf .(ii) $[a]_{n}[x]_{n}=[b]_{n} \Longleftrightarrow a x \triangleq b$

$$
\begin{aligned}
& \Longleftrightarrow \exists y \in \mathbb{Z}, \quad n y=a x-b \\
& \Longleftrightarrow\left(\frac{n}{d}\right) y=\left(\frac{a}{d}\right) x-\left(\frac{b}{d}\right) \\
& \Longleftrightarrow\left(\frac{a}{d}\right) x \equiv\left(\frac{b}{d}\right)\left(\bmod \frac{n}{d}\right)
\end{aligned}
$$

$\left\{\begin{array}{l}\operatorname{gcd}\left(\frac{a}{d}, \frac{n}{d}\right)=1 \Longrightarrow \frac{a}{d} \text { is a unit in } \mathbb{Z}_{n / d} \\ \operatorname{so} \exists x_{0} \in \mathbb{Z} \text { st. } \frac{a}{d} x_{0} \equiv 1\left(\bmod \frac{n}{d}\right)\end{array}\right\}$

$$
\Longleftrightarrow x \equiv\left(\frac{b}{d}\right) x_{0}\left(\bmod \frac{n}{d}\right)
$$

$\Longleftrightarrow x=\frac{n}{d} k+\left(\frac{b}{d}\right) x_{0} \quad$ for some integ.

$$
\begin{aligned}
& \Longleftrightarrow x \frac{n}{\equiv} \\
&\left(\frac{b}{d}\right) x_{0} \text { or } \\
&\left(\frac{b}{d}\right) x_{0}+\frac{n}{d} \text { or } \\
&\left(\frac{b}{d}\right) x_{0}+2 \frac{n}{d} \text { or } \\
& \vdots \\
&\left(\frac{b}{d}\right) x_{0}+(d-1) \frac{n}{d}
\end{aligned}
$$

