The ninth problem set.
Wednesday, December 03, 2014
8:30 PM
1.(a) Show that any group of prime order is cyclic.
(Hint. $|G|=p$ and $e_{\neq} g \in G$. What can $o(g)$ be?)
(b) Let G be a cyclic group, and $\phi: G \longrightarrow H$ be a group homomorphism. Show that $\operatorname{Im\phi }$ is cyclic.
(Hint. $G=\left\{g^{i} \mid i \in \mathbb{Z}\right\} \Rightarrow \operatorname{lm} \phi=\left\{\phi\left(g^{i}\right) \mid i \in \mathbb{Z}\right\}$.)
2. Suppose G is a group and $|G|=6$. Suppose $\exists a, b \in G$ st. $O(a)=2$ and $o(b)=3$.
(i) If $a b=b a$, then show that $G \simeq \mathbb{Z}_{6}$.
(It is enough to show it is cyclic.)
(ii) If $a b \neq b a$, then show that $a b=b^{-1} a$
(Hint. Use $G /\langle b\rangle$ to show

$$
\left.G=\left\{e, b, b^{2}, a, a b, a b^{2}\right\} .\right)
$$

(iii) Show that $G \simeq S_{6}$ if $a b \neq b a$.
3. (1) Show that any element of \mathbb{Q} / \mathbb{Z} is torsion.
(Example $\cdot 2\left(\frac{1}{2}+\mathbb{Z}\right)=1+\mathbb{Z}=\mathbb{Z}$.)
(ii) Find $\circ\left(\frac{1}{n}+\mathbb{Z}\right)$, and conclude $|ब / \mathbb{Z}|=\infty$.
(iii) Show that $\left\langle\frac{a_{1}}{b_{1}}+\mathbb{Z}, \frac{a_{2}}{b_{2}}+\mathbb{Z}\right\rangle \simeq \mathbb{Z}_{\operatorname{lcm}\left(b_{1}, b_{2}\right)}$
if $\operatorname{gcd}\left(a_{1}, b_{1}\right)=\operatorname{gcd}\left(a_{2}, b_{2}\right)=1$.
(Hint. (1) $\operatorname{gcd}(a, b)=1 \stackrel{?}{\Rightarrow}\left\langle\frac{a}{b}+\mathbb{Z}\right\rangle=\left\langle\frac{1}{b}+\mathbb{Z}\right\rangle$

$$
\text { (2) } \begin{aligned}
\frac{1}{\operatorname{lcm}\left(b_{1}, b_{2}\right)} & =\frac{\operatorname{gcd}\left(b_{1}, b_{2}\right)}{b_{1} b_{2}} \\
& =\frac{r b_{1}+s b_{2}}{b_{1} b_{2}} \quad \text { for some } r_{1} s \in \mathbb{Z} \\
& =\frac{r}{b_{2}}+\frac{s}{b_{1}} \\
\Rightarrow \frac{1}{\operatorname{lcm}\left(b_{1}, b_{2}\right)} & \left.+\mathbb{Z} \in\left\langle\frac{1}{b_{1}}+\mathbb{Z}, \frac{1}{b_{2}}+\mathbb{Z}\right\rangle .\right)
\end{aligned}
$$

[Remark. In fact, by a similar argument one can see that any finitely generated subgroup of \mathbb{Q} / \mathbb{Z} is cyclic.]
4. Prove that $\mathbb{Z} \times \mathbb{Z} /\langle(a, b)\rangle \simeq \mathbb{Z}$ if and only if
$\operatorname{gcd}(a, b)=1$.
(Hint. $\Leftarrow)$ Similar to the examples presented in the lecture, give $\phi: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$ s.t. her $\phi=\langle(a, b)\rangle$ and In $\phi=\mathbb{Z}$. (Ho wabout $b x$-aye?)
\Leftrightarrow (Similar argument as given in the lecture.)
5. (i) Show that $\mathbb{Z}_{n k} /_{n \mathbb{Z}_{n k}} \simeq \mathbb{Z}_{n}$.
(ii) Show that $\left.\mathbb{Z}_{4} \times \mathbb{Z}_{6} /\left\langle\left([2]_{4},[2]_{6}\right)\right\rangle\right) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(Hint: $\left([x]_{4},[y]_{6}\right) \mapsto\left([x]_{2},[y]_{2}\right)$

$$
\begin{aligned}
\operatorname{ker} \phi & =\left\{\left(2[x]_{4}, 2[y]_{6}\right) \mid x, y \in \mathbb{Z}\right\} \\
& =\left\langle\left([2]_{4},[0]_{6}\right),\left([0]_{4},[2]_{6}\right)\right\rangle \\
& \stackrel{?}{=}\left\langle\left([2]_{4},[2]_{6}\right)\right\rangle
\end{aligned}
$$

To see this equality, you can compare their sizes.)
6. Show that $G / Z(G)$ cannot be a non-trivial cyclic group.
(i.e. $G / Z(G)=\left\langle g_{0} Z(G)\right\rangle \stackrel{?}{=} \quad G$ is abelian.
$\Rightarrow G=\left\{g_{0}^{2} z \mid i \in \mathbb{Z}\right.$ and $\left.z \in \mathbb{Z}(G)\right\}$.)
(Recall that $Z(G)=\left\{g \in G \mid \forall g^{\prime} \in G, g g^{\prime}=g^{\prime} g\right\}$.)
7. Let $N=\{(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}$.
(i) Show that $N \unlhd S_{4}$.
(ii) Show that $S_{4 / N} \simeq S_{6}$. (Hint. Use problem 2)

