The forth problem set: due 11/05/14
Wednesday, October 29, 2014
10:15 AM

1. Find all the solutions of

$$
[14]_{21}[x]_{21}=[28]_{21} .
$$

2. Find all the solutions of

$$
\begin{aligned}
& x \stackrel{8}{\overline{=}} 5 \\
& x \stackrel{9}{\equiv} 7
\end{aligned}
$$

3. Let (G, \cdot) be a group. Let e be the identity element of G. Suppose for any $a \in G$ we have

$$
a^{2}=e
$$

Prove that G is abelian, i.e. $a b=b a$ for any $a, b \in G$.
4. Let $n \in \mathbb{Z}^{\geq 2}$. Prove that for any $[a]_{n}$ either $\exists[b]_{n}$ sit. $[a]_{n}[b]_{n}=[1]_{n}$ or $\quad \exists[b]_{n}$ st. $\quad[a]_{n}[b]_{n}=[0]_{n}$.
(Any element is either a unit or a zero-divisor.)
5. Let p be a prime number. Then we know

$$
\mathbb{Z}_{p}^{x}=\mathbb{Z}_{p} \backslash\{0\}
$$

(i) Prove that $[a]_{p}=[a]_{p}^{-1} \Leftrightarrow[a]_{p}=[\pm 1]_{p}$.
(ii) Prove that $[1]_{p} \cdot[2]_{p} \ldots \cdot[p-1]_{p}=[-1]_{p}$
(This is equivalent to $(p-1)!\equiv-1(\bmod p)$.
Hint for (ii) Pair each term with its modular inverse and notice that by part (i) you can actually do it unless the term is either $[1]_{p}$ or $[p-1]_{p}$.)
6. Let $n \in \mathbb{Z}^{21}$. For a divisor d of n, let

$$
A_{d}:=\{\quad k \in \mathbb{Z} \mid \quad 1 \leq k \leq n, \quad \operatorname{gcd}(k, n)=d\} .
$$

(i) Prove that $\left|A_{d}\right|=\varphi\left(\frac{n}{d}\right)$.
[Recall. $\varphi(m)=\left|\mathbb{Z}_{m}^{x}\right|=|\xi l \in \mathbb{Z}| 1 \leq \ell \leq m, \quad \xi \mid$. $\operatorname{gcd}(l, m)=1$
Hint. $\operatorname{gcd}(k, n)=d \Leftrightarrow \operatorname{gcd}\left(\frac{k}{d}, \frac{n}{d}\right)=1$.J
(ii) Prove that $\sum_{d / n} P(n / d)=n$.
[Hint. Notice that $\{1,2, \ldots, n\}=\bigcup_{d / n} A_{d}$ and $\quad A_{d_{1}} \cap A_{d_{2}}=\varnothing$ if $\left.d_{1} \neq d_{2}.\right]$
7. Let p be a prime number. Prove that, for any $a, b \in \mathbb{Z}$, we have

$$
\left([a]_{p}+[b]_{p}\right)^{p}=[a]_{p}^{p}+[b]_{p}^{p} .
$$

(Hint. One approach is to use the binomial expansion:

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{2} y^{n-i}
$$

where $\binom{n}{i}=\frac{n!}{i!(n-i)!}=\frac{n(n-1) \cdots(n-i+1)}{i!}$. And then show $p \left\lvert\,\binom{ p}{i}\right.$ if p is prime and $1 \leq i \leq p-1$.)

