The third problem set: due $10 / 30 / 14$.
Wednesday, October 22, 2014
10:22 AM

1. Let a and b be two positive integers. Prove that $\frac{a}{\operatorname{gcd}(a, b)}$ and $\frac{b}{\operatorname{gcd}(a, b)}$ are relatively prime.
2. Let $S \perp_{2}(\mathbb{Z}):=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{Z}\right\}$. and $a d-b c=1$
(i) Prove that, if $x \in S L_{2}(\mathbb{Z})$, then $\exists y \in S L_{2}(\mathbb{Z})$ st. $x y=y x=I \quad$ where $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
(ii) Prove that, if $x_{1}, x_{2} \in S L_{2}(\mathbb{Z})$, then

$$
x_{1} x_{2} \in S L_{2}(\mathbb{Z})
$$

(Remark. You are proving that $S L_{2}(\mathbb{Z})$ is a subgroup of $G L_{2}(\mathbb{R})$.)
3. Let $S L_{2}(\mathbb{Z})$ be as in problem 2. Prove that

$$
\left\{\left.x\left[\begin{array}{l}
1 \\
0
\end{array}\right] \right\rvert\, x \in S L_{2}(\mathbb{Z})\right\}=\left\{\left[\begin{array}{l}
a \\
b
\end{array}\right] \left\lvert\, \begin{array}{l}
\mid a, b \in \mathbb{Z}\} \\
\operatorname{gcd}(a, b)=1
\end{array}\right.\right.
$$

4. Let $n \in \mathbb{Z}^{>1}$ and $a \in \mathbb{Z}$. Suppose

$$
a^{d} \equiv 1(\bmod n) \quad \text { and } a^{i} \equiv 1(\bmod n)
$$

for $1 \leq i<d$.
Prove that $a^{m} \equiv 1(\bmod n) \Leftrightarrow d / m$.
(Remark. d is called the multiplicative order of a modulo n. In some books, it is clenoted by $\operatorname{ord}_{n}(a)$.)
5.(i) Use problem 4 to prove the following:

$$
\left.\begin{array}{l}
a^{m} \equiv 1(\bmod d) \\
a^{n} \equiv 1(\bmod d)
\end{array}\right\} \Rightarrow a^{\operatorname{gcd}(m, n)} \equiv 1(\bmod d)
$$

(ii) Use problem 4 to prove that

$$
k\left|m \Rightarrow a^{k}-1\right| a^{m}-1
$$

(iii) Use parts (i) and (ii) to prove

$$
\operatorname{gcd}\left(a^{n}-1, a^{m}-1\right)=a^{\operatorname{gcd}(m, n)}-1
$$

(Hint: For part (ii) notice that $a^{k} \equiv 1\left(\bmod a^{k}-1\right) \cdot$)
6. Let $\mathbb{Z}_{n}^{x}:=\left\{[a]_{n} \in \mathbb{Z}_{n} \mid \exists a^{\prime} \in \mathbb{Z}\right.$ s.t. $\left.[a]_{n}\left[a^{\prime}\right]_{n}=[1]_{n}\right\}$. Prove that $\left(\mathbb{Z}_{n}^{x}, \cdot\right)$ is a around.

In class we proved that the function

$$
\begin{aligned}
& \mathbb{Z}_{m n} \xrightarrow{f} \mathbb{Z}_{m} \times \mathbb{Z}_{n} \\
& {[a]_{m n} \longmapsto\left([a]_{m},[a]_{n}\right)}
\end{aligned}
$$

is a bijection if $\operatorname{gcd}(m, n)=1$.
7. (i) Prove that for any $x, y \in \mathbb{Z}_{m n}$ we have

$$
\begin{aligned}
f(x+y) & =f(x)+f(y) \\
\text { and } \quad f(x \cdot y) & =f(x) \cdot f(y)
\end{aligned}
$$

$\left(\ln \mathbb{Z}_{m} \times \mathbb{Z}_{n}\right.$, we add and multiply componentwise.)
(ii) Let $\mathbb{Z}_{m n}^{x}$ be as in Problem 6, and

$$
\begin{aligned}
&\left(\mathbb{Z}_{m} \times \mathbb{Z}_{n}\right)^{x}:=\left\{(a, b) \mid \exists\left(a^{\prime}, b^{\prime}\right) \in \mathbb{Z}_{m} \times \mathbb{Z}_{n} \text { st. }\right\} . \\
&(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left([1]_{m}[1]_{n}\right)
\end{aligned}
$$

Prove that f induces a bijection between

$$
\mathbb{Z}_{m n}^{x} \quad \text { and }\left(\mathbb{Z}_{m} \times \mathbb{Z}_{n}\right)^{x}
$$

(We already know f is 1-1; you have to show (a) if $x \in \mathbb{Z}_{m n}^{x}$, then $f(x) \in\left(\mathbb{Z}_{m} \times \mathbb{Z}_{n}\right)^{x}$.
(b) if $f(x) \in\left(\mathbb{Z}_{m} x \mathbb{Z}_{n}\right)^{x}$, then $x \in \mathbb{Z}_{m n}^{x}$.

For the second part notice that

$$
f\left([1]_{m n}\right)=\left([1]_{m},[1]_{n}\right)
$$

and f is 1-1.)
8. Let m and n be two relatively prime integers. And $\left(\mathbb{Z}_{m} \times \mathbb{Z}_{n}\right)^{x}$ be as in Problem 7 .
(i) Prove that $\left(\mathbb{Z}_{m} \times \mathbb{Z}_{n}\right)^{x}=\mathbb{Z}_{m}^{x} \times \mathbb{Z}_{n}^{x}$.
(ii) Use Problem 7 and part (i) to conclude

$$
\left|\mathbb{Z}_{m n}^{x}\right|=\left|\mathbb{Z}_{m}^{x}\right|\left|\mathbb{Z}_{n}^{x}\right|
$$

(iii) Prove that $\left|\mathbb{Z}_{p^{k}}^{x}\right|=p^{k-1}(p-1)$ if p is prime
(IV) Use parts (ii) and (iii) to prove

$$
\left|\mathbb{Z}_{p_{1}^{k_{1} \ldots p_{m}}}^{x}\right|=\prod_{i=1}^{m} p_{i}^{k_{i}-1}\left(p_{i}-1\right)
$$

where $\quad p_{1}<\cdots<p_{m}$ are primes and $k_{1}, \ldots, k_{m} \in \mathbb{Z}^{+}$.

