Practice Problems

Brian Longo

December 12, 2014

1 Notation

Unless otherwise stated, $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}$ denote the additive groups of the complex, real, rational numbers and integers respectively. $\mathbb{C}^{\times}, \mathbb{R}^{\times}, \mathbb{Q}^{\times}$denotes the group of nonzero complex, real, rational numbers under multiplication respectively. $G L_{n}(\mathbb{R})$ denotes the multiplicative group of $n \times n$ matrices with nonzero determinant while $S L_{n}(\mathbb{R})$ denotes the subgroup of $n \times n$ matrices with determinant 1. Lastly, For a set A of a group G, let $C_{G}(A):=\{g \in G \mid g a=a g \forall a \in A\}$ be its commutator subgroup.

2 Exercises

2.1 Dihedral groups

From here on, we will use the usual presentation of the Dihedral group of order $2 n$: $D_{n}=\left\langle R, F \mid R^{n}=F^{2}=1, F R=R^{-1} F\right\rangle$. Recall here that R represents a roation (counterclockwise) by an angle of $2 \pi / n$ and F is a reflection about a line through one of the vertices of the regular n-gon.

1. Let $x \in D_{n}, x \notin\langle R\rangle$. Show that $R x=R^{-1} x$.
2. Let G be the group generated by two elements a and b, such that $a^{2}=b^{2}=(a b)^{4}=$ e. Show that this group is finite. Show that $G \cong D_{4}$.
3. Let $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$ be the unit circle in the complex plane. You proved in the homework that S^{1} is a multiplicative subgroup of \mathbb{C}^{\times}. Describe the cosets of S^{1}. Prove that $\mathbb{C}^{\times} / S^{1} \cong \mathbb{R}$.
4. Show that D_{5} is isomorphic to the subgroup of $G L_{2}(\mathbb{R})$ generated by the matrices

$$
\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

where $\theta=2 \pi / 5$.

2.2 Symmetric groups

Let X be a set. Recall that the group of permutations, S_{X}, on X is defined to be the group of all bijective functions from X to itself where the group operation is given by function composition.

1. Let

$$
\sigma=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 5 & 2 & 1
\end{array}\right], \tau=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 2 & 4 & 1
\end{array}\right]
$$

Find the cycle decompositions of the following permutations: $\sigma, \tau, \sigma^{2}, \sigma \tau, \tau \sigma$ and $\tau^{2} \sigma$.
2. Find the order of (1128104)(213)(5117)(69).
3. Let $\Omega=\{1,2,3, \ldots\}$. Prove that $\left|S_{\Omega}\right|$ is infinite. Hint: $\infty!=\infty$ is not a valid solution.
4. (a) Let σ be the 12-cycle (123456789101112). For which positive integers i is σ^{i} also a 12 -cycle?
(b) Let τ be the 8 -cycle (12345678). For which positive integers i is τ^{i} also an 8-cycle?
(c) Let ω be the 14-cycle (1234567891011121314). For which positive integers i is ω^{i} also a 14 -cycle?

2.3 Homomorphisms and Isomorphisms

1. Prove $\mathbb{R}^{\times} \not \approx \mathbb{C}^{\times}$.
2. Prove $\mathbb{Z} \not \approx \mathbb{Q}$
3. Prove $\mathbb{R} \neq \mathbb{Q}$.
4. Let $\mathbb{R}^{2}=\{(x, y) \mid x, y \in \mathbb{R}\}$. \mathbb{R}^{2} is a group under componentwise addition. Show that the function $\pi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $\pi(x, y)=x$ is a group homomorphism. What are the cosets of $\operatorname{ker}(\pi)$ in \mathbb{R}^{2} ?
5. Let $T \subset G L_{n}(\mathbb{R})$ be the set of invertible diagonal matrices. Prove that $T \cong\left(\mathbb{R}^{\times}\right)^{n}$. (If you are stuck, try the small case when $n=2$ and then generalize.)
6. Show that $\mathbb{R} \cong \mathbb{R}_{>0}^{\times}$where the first group is the additive group of real numbers and the latter is the multiplicative group of positive real numbers.
7. Recall that for a group G, we define the group $\operatorname{Aut}(G)$ to be the group of isomorphisms from G to itself, where the group operation is given by function composition. Find $\operatorname{Aut}(\mathbb{Z})$.
8. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be real valued functions defined by $f(x)=1 / x$ and $g(x)=$ $(x-1) / x . \quad f$ and g generate a group G with the operation given by function composition. Prove that $G \cong S_{3}$.
9. (Direct Products) Let G and G^{\prime} be two groups. Define their direct product $G \times G^{\prime}$ to be the group of all pairs $\left(g, g^{\prime}\right) \in G \times G^{\prime}$ where the group operation is defined by $\left(g_{1}, g_{1}^{\prime}\right)\left(g_{2}, g_{2}^{\prime}\right)=\left(g_{1} g_{2}, g_{1} g_{2}^{\prime}\right)$.
(a) Prove that $G \times G^{\prime}$ is a group.
(b) Prove that $H_{1}=G \times\{e\}$ and $H_{2}=e \times G^{\prime}$ are both subgroups of $G \times G^{\prime}$.
(c) Prove that the H_{1} and H_{2} are both normal in $G \times G^{\prime}$.
(d) Prove that if $h_{1} \in H_{1}, h_{2} \in H_{2}$ then $h_{1} h_{2}=h_{2} h_{1}$.
10. Is $S_{3} \cong H_{1} \times H_{2}$ for any two subgroups H_{1}, H_{2} of S_{3} ?

2.4 Subgroups

1. Find an example of a group G and an infinite subset H of G such that H is closed under multiplication but not inversion.
2. Let H and K be two subgroups of a group G. Show that $H \cup K$ is a subgroup of G if and only if $H \subset K$ or $K \subset H$.
3. Let $A \subset B$ be two subsets of a group G. Show that $C_{G}(B) \leq C_{G}(A)$.
4. Let H be a subgroup of a group G. Show that $H \leq C_{G}(H)$ if and only if H is abelian.
5. Show that $G L_{2}(\mathbb{R})$ is a subgroup of $G L_{2}(\mathbb{C})$.
6. Show that if a group G has exactly one element a of order 2 , then $a \in Z(G)$.
7. Let

$$
H(\mathbb{R}):=\left\{\left.\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right] \right\rvert\, a, b, c \in \mathbb{R}\right\}
$$

Show that $H(\mathbb{R})$ is a subgroup of $S L_{3}(\mathbb{R}) .{ }^{1}$ Is $H(\mathbb{R})$ normal in $S L_{3}(\mathbb{R})$? Find $Z(H(\mathbb{R}))$.
8. Let A and B be two subsets of a group G. Define their product $A B$ to be the set $\{a b \in G \mid a \in A, b \in B\}$. Let H and N be two subgroups of a group G and suppose that N is normal in G. Show that $H N$ is a subgroup of G. (It actually suffices to assume that H normalizes N. That is, for every $h \in H$ and $\left.n \in N, h n h^{-1} \in N\right)$.

[^0]9. Show that if H and K are subgroups of a group G such that $H K$ is again a subgroup of G. Then $H K=K H$.
10. (Derived subgroups) Let G be a group and let $a, b \in G$. The commutator of a and b is defined to be the element $[a, b]:=a b a^{-1} b^{-1} \in G$. The first derived subgroup of $G,[G, G]$ is the subgroup of G generated by all elements of the form $[a, b]$ for $a, b \in G$.
(a) Prove that $[G, G]$ is a subgroup of G. Hint: it suffices to check that the product of two commutators is a commutator, and the inverse of a commutator is a commutator.
(b) Prove that $[G, G]$ is normal in G. Hint: show that $g[a, b] g^{-1}=\left[g a g^{-1}, g b g^{-1}\right]$ for $a, b, g \in G$.
(c) Prove that the factor group $G /[G, G]$ is abelian.
(d) Prove that if $\phi: G \rightarrow G^{\prime}$ is a group homomorphism from G to an abelian group G^{\prime}, then $[G, G] \leq \operatorname{ker}(\phi)$.
(e) Prove that $\left[S_{n}, S_{n}\right]=A_{n}$. Hint: use part (d) to show that $\left[S_{n}, S_{n}\right] \subset A_{n}$. For the other inclusion, show that any 3-cycle can be written as a commutator, and then use the fact that A_{n} is generated by 3 -cycles.
(f) Use the previous part to show that there is only one homomorphism from S_{n} onto ± 1.
11. (a) Show that the relation " $a \sim b$ is and only if $a=g b g^{-1}$ for some $g \in G "$ is an equivalency relation.
(b) Let $\mathcal{O}_{G}(a)=\{b \in G \mid a \sim b\}$. Use part (a) to deduce that the sets $\left\{\mathcal{O}_{G}(g)\right\}_{g \in G}$ partition $G . \mathcal{O}_{G}(a)$ is called the conjugacy class of a.
(c) Let $a \in G$. Prove that the function
\[

$$
\begin{aligned}
\phi: G / C_{G}(a) & \longrightarrow \mathcal{O}_{G}(a) \\
\phi\left(x C_{G}(a)\right) & =x a x^{-1}
\end{aligned}
$$
\]

is a well defined bijection. Warning: $G / C_{G}(a)$ is not a group necessarily.
(d) Assume G is finite. Deduce the class equation:

$$
|G|=|Z(G)|+\sum_{a \in \Omega}\left[G: C_{G}(a)\right]
$$

, where Ω is a set of representatives of conjugacy classes of order greater than 1.
12. p-groups: Let G be a group of order p^{n} where p is a prime number and n is a positive integer. Use LaGrange's theorem and the class equation to prove that $Z(G) \neq\{e\}$. Show that any group of order p^{2} is abelian. Give an example of a nonabelian group of order p^{3}.

2.5 The first isomorphism theorem

1. Let m, n be coprime. Show that there is no nontrivial homomorphism from Z_{m} to Z_{n}.
2. For which natural numbers m is there surjective homomorphism from D_{17} to Z_{m}. What if the homomorphism is not required to be surjective?
3. Show that $G L_{2}(\mathbb{R}) / S L_{2}(\mathbb{R}) \cong \mathbb{R}^{\times}$.
4. (The second isomorphism theorem) Let G be a group, and let A and B be normal subgroups ${ }^{2}$. Then $A B$ is a subgroup of G. Prove that B is normal in $A B$, $A \cap B$ is normal in A, and that

$$
A / A \cap B \cong A B / B
$$

Hint: Find a homomorphism from A to $A B / B$ with kernel $A \cap B$ and use the first isomorphism theorem.
5. (The third isomorphism theorem) Let G be a group and let H and K be two normal subgroups. Suppose $H \leq K$. Prove that K / H is a normal subgroup of G / H and that

$$
(G / H) /(K / H) \cong G / K
$$

Hint: Find a homomorphism from G / H to G / K whose kernel is K / H and use the first isomorphism theorem.

3 Hints for the exercises

3.1 Dihedral groups

1. If $x \in D_{n}$ is not a rotation, then $x=R^{i} F$ for some $i \in\{1, \ldots, n-1\}$. Use the relation $F R=R^{-1} F$ to complete the problem.
2. Notice that the elements F and $R^{3} F$ satisfy the relations $F^{2}=e,\left(R^{3} F\right)^{2}=e$, and $\left(F R^{3} F\right)^{4}=R^{4}=e$. Show that the function $\phi: G \rightarrow D_{4}, \phi(a)=F, \phi(b)=R^{3} F$ is an isomorphism.
3. The function $\phi: \mathbb{C}^{\times} \rightarrow \mathbb{R}_{>0}^{\times}, \phi(z)=|z|$ is a surjective homomorphism with kernel S^{1}. The first isomorphism theorem finishes the proof.
[^1]4. The first matrix rotates the plane \mathbb{R}^{2} by an angle of $2 \pi / 5$ while the second matrix reflects the plane about the line $y=x$. Show that the function $\phi(R)=$ $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right], \phi(F)=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is an isomorphsim

3.2 Symmetric groups

1. Simple calculation. See textbook.
2. The order of disjoint cycles is the least common multiple of their cycle lengths.
3. Show that for every n, S_{n} is a subgroup of S_{Ω}. Conclude that $\left|S_{\Omega}\right| \geq\left|S_{n}\right|$ for every positive integer n. Therefore $\left|S_{\Omega}\right|=\infty$.
4. This is essentially a question about cyclic groups. If σ is an n-cycle, σ^{i} is an n-cycle if and only if $\operatorname{gcd}(i, n)=1$.

3.3 Homomorphisms and Isomorphisms

1. \mathbb{R}^{\times}has only two elements of finite order whereas \mathbb{C}^{\times}has infinitely many.
2. \mathbb{Q} is not cyclic. (Prove this!).
3.
4. The cosets of $\operatorname{ker}(\pi)$ are the lines parallel to the x-axis.
5. $\phi(x)=e^{x}$ is an isomorphism.
6. $\operatorname{Aut}(\mathbb{Z}) \cong Z_{2}$. Any isomorphism must take a generator of \mathbb{Z} to another generator. The only generators of \mathbb{Z} are 1 and -1 . Therefore the only automorphisms are the identity map, and the function that takes n to $-n$.
7. The function that takes f to (12) and g to $(1 / 2 / 3)$ is an isomorphism.
8. everything should follow straight from the definitions.
9. No. If H is a subgroup of S_{3}, then $|H| \mid 6$. Therefore $|H|=1,2,3$ or 6 . If $|H|=1$, then $H=\{e\}$. If $|H|$ is 6 , then $H=S_{3}$. Therefore the only possibilities for H_{1} and H_{2} is that H_{1} an order 2 cyclic group and $H_{2} \mathrm{~s}$ an order 3 cyclic group. In this case, $H_{1} \times H_{2} \cong Z_{6} \nsubseteq S_{3}$.

3.4 Subgroups

1. Take $G=\mathbb{C}^{\times}$and $H=\left\{z \in \mathbb{C}^{\times}| | z \mid>1\right\}$.
2. If say $H \subset K$, the $H \cup K=K$, which is a subgroup by assumption. Suppose $H \cup K$ is a subgroup of G and that $H \not \subset K$. Choose an element $h \in H \backslash K$, and $k \in K$. Since $H \cup K$ is a subgroup, $h k \in H \cup K$. That is, either $h k \in H$ or $h k \in K$. If $h k \in K$, then $h k k^{-1}=h \in K$ which is a contradiction. Therefore for every $k \in K$, $h k \in H$. But then $h^{-1} h k=k \in H$ which shows $K \subset H$.
3. If $g \in G$ satusfies $g b g^{-1}=b$ for all $b \in B$, then $g a g^{-1}=a$ for all $a \in A$ since $A \subset B$.
4. Quickly follows from the definition of centralizer.
5. This is just a quick calculation.
6. If a is an element of order 2 , then for any $g \in G, g a g^{-1}$ also has order 2 .
7. A quick calculation shows that $H(\mathbb{R})$ is a subgroup. Conjugate by the matrix

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

to see that $H(\mathbb{R})$ is not normal. The center is matrices of the form

$$
\left[\begin{array}{lll}
1 & 0 & * \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

8. The proof of this is actually in the book.
9. If $k h \in K H$, then $k h=\left(h^{-1} k^{-1}\right)^{-1} \in H K$ since $H K$ is a subgroup. Do a similar trick for the reverse inclusion.
10. Most of this exercise was in your homework. To show part (f), note that $\left[S_{n}, S_{n}\right]=$ A_{n} is in the kernel of any such homomorphism since $\{ \pm 1\}$ is an abelian group. By the first isomorphism theorem, the size of the kernel of such a homomorphism is $n!/ 2$. Therefore the kernel is exactly A_{n}, which tells us that the only homomorphism is the sign homomorphism.
11. Will add solutions to these later.

3.5 The first isomorphism theorem

1. If $\phi: Z_{n} \rightarrow Z_{m}$ were a homomorphism, then by the first isomorphism theorem, $\left|Z_{n}\right| /|\operatorname{ker}(\phi)|=|i m(\phi)|$. In particular, $|i m(\phi)|$ divides $\left|Z_{n}\right|=n$. On the other hand, $i m(\phi)$ is a subgroup of Z_{m} and so $|i m(\phi)|$ divides $\left|Z_{m}\right|=m$. Since m and n are coprime, $|i m(\phi)|=1$.
2. If $\phi: D_{17} \rightarrow Z_{m}$ were a surjective homomorphism, then $|i m(\phi)|=\left|Z_{m}\right|=m$ divides $\left|D_{17}\right|=34$ by the first isomorphism theorem. So we can narrow m down to $1,2,17,34$. If $m=34$, then ϕ would actually be injective, and hence ϕ would be an isomorphism. However, D_{17} is not cyclic. So the only possibilities are $1,2,17$. Try to find an example for each.
3. The determinant function $\operatorname{det}: G L_{n}(\mathbb{R}) \rightarrow \mathbb{R}^{\times}$is a surjective homomorphism with kernel $S L_{n}(\mathbb{R})$.
4. The function $\phi: A \rightarrow A B / B$ such that $\phi(a)=a B$ is a surjective homomorphism with kernel $A \cap B$.

[^0]: ${ }^{1} H(\mathbb{R})$ is called the Heisenberg group of \mathbb{R}

[^1]: ${ }^{2}$ You actually only need that A normalizes B.

