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1 Notation

Unless otherwise stated, C,R,Q,Z denote the additive groups of the complex, real,
rational numbers and integers respectively. C×,R×,Q× denotes the group of nonzero
complex, real, rational numbers under multiplication respectively. GLn(R) denotes the
multiplicative group of n× n matrices with nonzero determinant while SLn(R) denotes
the subgroup of n × n matrices with determinant 1. Lastly, For a set A of a group G,
let CG(A) := {g ∈ G | ga = ag ∀a ∈ A} be its commutator subgroup.

2 Exercises

2.1 Dihedral groups

From here on, we will use the usual presentation of the Dihedral group of order 2n:
Dn = 〈R,F | Rn = F 2 = 1, FR = R−1F 〉. Recall here that R represents a roation
(counterclockwise) by an angle of 2π/n and F is a reflection about a line through one of
the vertices of the regular n-gon.

1. Let x ∈ Dn, x /∈ 〈R〉. Show that Rx = R−1x.

2. Let G be the group generated by two elements a and b, such that a2 = b2 = (ab)4 =
e. Show that this group is finite. Show that G ∼= D4.

3. Let S1 = {z ∈ C | |z| = 1} be the unit circle in the complex plane. You proved in
the homework that S1 is a multiplicative subgroup of C×. Describe the cosets of
S1. Prove that C×/S1 ∼= R.

4. Show that D5 is isomorphic to the subgroup of GL2(R) generated by the matrices[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
,

[
0 1
1 0

]
where θ = 2π/5.

1



2.2 Symmetric groups

Let X be a set. Recall that the group of permutations, SX , on X is defined to be the
group of all bijective functions from X to itself where the group operation is given by
function composition.

1. Let

σ =

[
1 2 3 4 5
3 4 5 2 1

]
, τ =

[
1 2 3 4 5
5 3 2 4 1

]
Find the cycle decompositions of the following permutations: σ, τ, σ2, στ, τσ and
τ2σ.

2. Find the order of (1 12 8 10 4)(2 13)(5 11 7)(6 9).

3. Let Ω = {1, 2, 3, . . . }. Prove that |SΩ| is infinite. Hint: ∞! = ∞ is not a valid
solution.

4. (a) Let σ be the 12-cycle (1 2 3 4 5 6 7 8 9 10 11 12). For which positive integers
i is σi also a 12-cycle?

(b) Let τ be the 8-cycle (1 2 3 4 5 6 7 8). For which positive integers i is τ i also
an 8-cycle?

(c) Let ω be the 14-cycle (1 2 3 4 5 6 7 8 9 10 11 12 13 14). For which positive
integers i is ωi also a 14-cycle?

2.3 Homomorphisms and Isomorphisms

1. Prove R× 6∼= C×.

2. Prove Z 6∼= Q

3. Prove R 6∼= Q.

4. Let R2 = {(x, y)|x, y ∈ R}. R2 is a group under componentwise addition. Show
that the function π : R2 → R given by π(x, y) = x is a group homomorphism.
What are the cosets of ker(π) in R2?

5. Let T ⊂ GLn(R) be the set of invertible diagonal matrices. Prove that T ∼= (R×)n.
(If you are stuck, try the small case when n = 2 and then generalize.)

6. Show that R ∼= R×>0 where the first group is the additive group of real numbers
and the latter is the multiplicative group of positive real numbers.

7. Recall that for a group G, we define the group Aut(G) to be the group of isomor-
phisms from G to itself, where the group operation is given by function composi-
tion. Find Aut(Z).
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8. Let f, g : R → R be real valued functions defined by f(x) = 1/x and g(x) =
(x − 1)/x. f and g generate a group G with the operation given by function
composition. Prove that G ∼= S3.

9. (Direct Products) Let G and G′ be two groups. Define their direct product G×G′
to be the group of all pairs (g, g′) ∈ G × G′ where the group operation is defined
by (g1, g

′
1)(g2, g

′
2) = (g1g2, g1g

′
2).

(a) Prove that G×G′ is a group.

(b) Prove that H1 = G× {e} and H2 = e×G′ are both subgroups of G×G′.
(c) Prove that the H1 and H2 are both normal in G×G′.
(d) Prove that if h1 ∈ H1, h2 ∈ H2 then h1h2 = h2h1.

10. Is S3
∼= H1 ×H2 for any two subgroups H1, H2 of S3?

2.4 Subgroups

1. Find an example of a group G and an infinite subset H of G such that H is closed
under multiplication but not inversion.

2. Let H and K be two subgroups of a group G. Show that H ∪K is a subgroup of
G if and only if H ⊂ K or K ⊂ H.

3. Let A ⊂ B be two subsets of a group G. Show that CG(B) ≤ CG(A).

4. Let H be a subgroup of a group G. Show that H ≤ CG(H) if and only if H is
abelian.

5. Show that GL2(R) is a subgroup of GL2(C).

6. Show that if a group G has exactly one element a of order 2, then a ∈ Z(G).

7. Let

H(R) := {

 1 a b
0 1 c
0 0 1

 | a, b, c ∈ R}

Show that H(R) is a subgroup of SL3(R).1 Is H(R) normal in SL3(R)? Find
Z(H(R)).

8. Let A and B be two subsets of a group G. Define their product AB to be the set
{ab ∈ G | a ∈ A, b ∈ B}. Let H and N be two subgroups of a group G and suppose
that N is normal in G. Show that HN is a subgroup of G. (It actually suffices to
assume that H normalizes N . That is, for every h ∈ H and n ∈ N , hnh−1 ∈ N).

1H(R) is called the Heisenberg group of R
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9. Show that if H and K are subgroups of a group G such that HK is again a
subgroup of G. Then HK = KH.

10. (Derived subgroups) Let G be a group and let a, b ∈ G. The commutator of
a and b is defined to be the element [a, b] := aba−1b−1 ∈ G. The first derived
subgroup of G, [G,G] is the subgroup of G generated by all elements of the form
[a, b] for a, b ∈ G.

(a) Prove that [G,G] is a subgroup of G. Hint: it suffices to check that the product
of two commutators is a commutator, and the inverse of a commutator is a
commutator.

(b) Prove that [G,G] is normal in G. Hint: show that g[a, b]g−1 = [gag−1, gbg−1]
for a, b, g ∈ G.

(c) Prove that the factor group G/[G,G] is abelian.

(d) Prove that if φ : G → G′ is a group homomorphism from G to an abelian
group G′, then [G,G] ≤ ker(φ).

(e) Prove that [Sn, Sn] = An. Hint: use part (d) to show that [Sn, Sn] ⊂ An. For
the other inclusion, show that any 3-cycle can be written as a commutator,
and then use the fact that An is generated by 3-cycles.

(f) Use the previous part to show that there is only one homomorphism from Sn
onto ±1.

11. (a) Show that the relation ”a ∼ b is and only if a = gbg−1 for some g ∈ G” is an
equivalency relation.

(b) Let OG(a) = {b ∈ G | a ∼ b}. Use part (a) to deduce that the sets {OG(g)}g∈G
partition G. OG(a) is called the conjugacy class of a.

(c) Let a ∈ G. Prove that the function

φ : G/CG(a) −→ OG(a)

φ(xCG(a)) = xax−1

is a well defined bijection. Warning: G/CG(a) is not a group necessarily.

(d) Assume G is finite. Deduce the class equation:

|G| = |Z(G)|+
∑
a∈Ω

[G : CG(a)]

, where Ω is a set of representatives of conjugacy classes of order greater than
1.

12. p-groups: Let G be a group of order pn where p is a prime number and n is a
positive integer. Use LaGrange’s theorem and the class equation to prove that
Z(G) 6= {e}. Show that any group of order p2 is abelian. Give an example of a
nonabelian group of order p3.
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2.5 The first isomorphism theorem

1. Let m,n be coprime. Show that there is no nontrivial homomorphism from Zm to
Zn.

2. For which natural numbers m is there surjective homomorphism from D17 to Zm.
What if the homomorphism is not required to be surjective?

3. Show that GL2(R)/SL2(R) ∼= R×.

4. (The second isomorphism theorem) Let G be a group, and let A and B be
normal subgroups2. Then AB is a subgroup of G. Prove that B is normal in AB,
A ∩B is normal in A, and that

A/A ∩B ∼= AB/B

Hint: Find a homomorphism from A to AB/B with kernel A∩B and use the first
isomorphism theorem.

5. (The third isomorphism theorem) Let G be a group and let H and K be two
normal subgroups. Suppose H ≤ K. Prove that K/H is a normal subgroup of
G/H and that

(G/H)/(K/H) ∼= G/K

.

Hint: Find a homomorphism from G/H to G/K whose kernel is K/H and use the
first isomorphism theorem.

3 Hints for the exercises

3.1 Dihedral groups

1. If x ∈ Dn is not a rotation, then x = RiF for some i ∈ {1, . . . , n − 1}. Use the
relation FR = R−1F to complete the problem.

2. Notice that the elements F and R3F satisfy the relations F 2 = e, (R3F )2 = e, and
(FR3F )4 = R4 = e. Show that the function φ : G→ D4, φ(a) = F, φ(b) = R3F is
an isomorphism.

3. The function φ : C× → R×>0, φ(z) = |z| is a surjective homomorphism with kernel
S1. The first isomorphism theorem finishes the proof.

2You actually only need that A normalizes B.
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4. The first matrix rotates the plane R2 by an angle of 2π/5 while the second ma-
trix reflects the plane about the line y = x. Show that the function φ(R) =[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, φ(F ) =

[
0 1
1 0

]
is an isomorphsim

3.2 Symmetric groups

1. Simple calculation. See textbook.

2. The order of disjoint cycles is the least common multiple of their cycle lengths.

3. Show that for every n, Sn is a subgroup of SΩ. Conclude that |SΩ| ≥ |Sn| for every
positive integer n. Therefore |SΩ| =∞.

4. This is essentially a question about cyclic groups. If σ is an n-cycle, σi is an n-cycle
if and only if gcd(i, n) = 1.

3.3 Homomorphisms and Isomorphisms

1. R× has only two elements of finite order whereas C× has infinitely many.

2. Q is not cyclic. (Prove this!).

3.

4. The cosets of ker(π) are the lines parallel to the x-axis.

5. φ(x) = ex is an isomorphism.

6. Aut(Z) ∼= Z2. Any isomorphism must take a generator of Z to another generator.
The only generators of Z are 1 and −1. Therefore the only automorphisms are the
identity map, and the function that takes n to −n.

7. The function that takes f to (1 2) and g to (1/2/3) is an isomorphism.

8. everything should follow straight from the definitions.

9. No. If H is a subgroup of S3, then |H| | 6. Therefore |H| = 1, 2, 3 or 6. If |H| = 1,
then H = {e}. If |H| is 6, then H = S3. Therefore the only possibilities for H1

and H2 is that H1 an order 2 cyclic group and H2 s an order 3 cyclic group. In
this case, H1 ×H2

∼= Z6 6∼= S3.

3.4 Subgroups

1. Take G = C× and H = {z ∈ C× | |z| > 1}.
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2. If say H ⊂ K, the H∪K = K, which is a subgroup by assumption. Suppose H∪K
is a subgroup of G and that H 6⊂ K. Choose an element h ∈ H \K, and k ∈ K.
Since H ∪K is a subgroup, hk ∈ H ∪K. That is, either hk ∈ H or hk ∈ K. If
hk ∈ K, then hkk−1 = h ∈ K which is a contradiction. Therefore for every k ∈ K,
hk ∈ H. But then h−1hk = k ∈ H which shows K ⊂ H.

3. If g ∈ G satusfies gbg−1 = b for all b ∈ B, then gag−1 = a for all a ∈ A since
A ⊂ B.

4. Quickly follows from the definition of centralizer.

5. This is just a quick calculation.

6. If a is an element of order 2, then for any g ∈ G, gag−1 also has order 2.

7. A quick calculation shows that H(R) is a subgroup. Conjugate by the matrix0 1 0
0 0 1
1 0 0


to see that H(R) is not normal. The center is matrices of the form1 0 ∗

0 1 0
0 0 1


8. The proof of this is actually in the book.

9. If kh ∈ KH, then kh = (h−1k−1)−1 ∈ HK since HK is a subgroup. Do a similar
trick for the reverse inclusion.

10. Most of this exercise was in your homework. To show part (f), note that [Sn, Sn] =
An is in the kernel of any such homomorphism since {±1} is an abelian group. By
the first isomorphism theorem, the size of the kernel of such a homomorphism is
n!/2. Therefore the kernel is exactly An, which tells us that the only homomor-
phism is the sign homomorphism.

11. Will add solutions to these later.

3.5 The first isomorphism theorem

1. If φ : Zn → Zm were a homomorphism, then by the first isomorphism theorem,
|Zn|/| ker(φ)| = |im(φ)|. In particular, |im(φ)| divides |Zn| = n. On the other
hand, im(φ) is a subgroup of Zm and so |im(φ)| divides |Zm| = m. Since m and
n are coprime, |im(φ)| = 1.
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2. If φ : D17 → Zm were a surjective homomorphism, then |im(φ)| = |Zm| = m
divides |D17| = 34 by the first isomorphism theorem. So we can narrow m down
to 1, 2, 17, 34. If m = 34, then φ would actually be injective, and hence φ would be
an isomorphism. However, D17 is not cyclic. So the only possibilities are 1, 2, 17.
Try to find an example for each.

3. The determinant function det : GLn(R)→ R× is a surjective homomorphism with
kernel SLn(R).

4. The function φ : A → AB/B such that φ(a) = aB is a surjective homomorphism
with kernel A ∩B.
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