THE SECOND MIDTERM.

MATH 103B

The exam will be considered out 50 .

1. (10 points) Is $(3 / 7) x^{4}-(2 / 7) x^{2}+(9 / 35) x+(3 / 5)$ irreducible over \mathbb{Q} ?
2.

(1) (5 points) Find all the degree 2 irreducible monic polynomials in $(\mathbb{Z} / 3 \mathbb{Z})[x]$.
(2) (5 points) Prove that $x^{3}-x+1$ is irreducible over $\mathbb{Z} / 3 \mathbb{Z}$.
(3) (10 points) Find a field of order 27. Prove your claim.
3. (15 points) Define the content of a polynomial and prove that product of two primitive polynomials is a primitive polynomial.
4. Let R and S be two unital commutative rings and $f: R \rightarrow S$ be a surjective ring homomorphism.
(1) (5 points) If I is an ideal of S, then $f^{-1}(I):=\{x \in R \mid f(x) \in I\}$ is an ideal of R.
(2) (5 points) If I is a prime ideal of S, then $f^{-1}(I)$ is a prime ideal of S.
(3) (10 points) If J is an ideal of $R, \operatorname{ker}(f) \subseteq J$ and $f(J)=S$, then $J=R$.
(4) (5 points) If I is a maximal ideal of S, then $f^{-1}(I)$ is a maximal ideal of R.

Mathematics Dept, University of California, San Diego, CA 92093-0112
E-mail address: golsefidy@ucsd.edu

[^0]
[^0]: Date: 3/2/2012.

