THE SECOND MIDTERM.

MATH 103B

The exam will be considered out 50 .

1. (10 points) Is $x^{4}+x+1$ irreducible over \mathbb{Z} ?
2. (10 points) Construct a field of order 25 .
3.

(1) (3 points) Define the content of a polynomial in $\mathbb{Z}[x]$.
(2) (12 points) Assume that product of two primitive polynomials is primitive. Prove that $c(f g)=$ $c(f) c(g)$, where $f, g \in \mathbb{Z}[x]$ and $c(f), c(g)$ are the contents of f and g, respectively.
4. For a commutative unital ring R, let $J(R)$ be the intersection of all the maximal ideals of R.
(1) (10 points) Find all the maximal ideals of \mathbb{Z} and compute $J(\mathbb{Z})$.
(2) (10 points) Find $J(\mathbb{Z} / 8 \mathbb{Z})$.
(3) (10 points) Let R be a commutative unital ring, F be a field and $f: R \rightarrow F$ be a surjective ring homomorphism. Then $J(R) \subseteq \operatorname{ker}(f)$.
(4) (5 points) Let R be a unital commutative ring. Assume that any ideal I of R is contained in a maximal ideal. Prove that for any $x \in J(R), 1+x$ is a unit. (Hint: Consider $\langle 1+x\rangle$.)

Mathematics Dept, University of California, San Diego, CA 92093-0112
E-mail address: golsefidy@ucsd.edu

[^0]
[^0]: Date: 3/2/2012.

