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Abstract. Suppose SL2(Fp) × SL2(Fp) is generated by a symmetric
set S of cardinality n where p is a prime number. Suppose the Cheeger
constants of the Cayley graphs of SL2(Fp) with respect to πL(S) and
πR(S) are at least c0, where πL and πR are projections to the left and the
right components of SL2(Fp)×SL2(Fp), respectively. Then the Cheeger
constant of the Cayley graph of SL2(Fp) × SL2(Fp) with respect to S
is at least c where c is a positive number which only depends on n and
c0. This gives an affirmative answer to a question of Lindenstrauss and
Varjú.

1. Introduction and statement of main results

1.1. Background and main results. Let X(i), i ∈ N, be independent
identically distributed (i.i.d.) random variables into a finite group G, with
distribution µ. An l-step random walk on G with distribution µ is the ran-
dom variable Xℓ = X(ℓ)X(ℓ−1) · · ·X(1). Given independent random vari-
ables X,Y into G with distribution µ and ν, respectively, we see that the
distribution of XY is the convolution

µ ∗ ν(y) :=
∑
x∈G

µ(x)ν(x−1y)

of µ and ν. Similarly f ∗ g can be defined for any f, g ∈ L2(G). Now the
distribution of Xℓ is

µ∗(ℓ) := µ ∗ · · · ∗ µ︸ ︷︷ ︸
ℓ

.

We say that a measure µ on G is symmetric if for every x ∈ G we have that
µ(x) = µ(x−1). We note that µ induces an operator Tµ : L2(G) → L2(G)
given by

Tµ(f) = µ ∗ f.
We also note that G acts on L2(G) in the following manner

(x · f)(x′) = f(x−1 · x′),

and so, L2(G) is a C[G]-module. Note that we can identify L2(G) with C[G]
by sending f to

∑
x∈G f(x)x, and via this identification f ∗ g is sent to fg,

the product of f and g in C[G]. Let L2(G)◦ be the space orthogonal to the
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constants in L2(G). Note that L2(G)◦ is a C[G]-submodule of L2(G). Hence
Tµ sends L2(G)◦ to itself. We note that for every f ∈ L2(G) we have

∥Tµ(f)∥2 =
∥∥∥∑
x∈G

µ(x)x · f
∥∥∥
2
≤

∑
x∈G

µ(x)∥x · f∥2 = ∥f∥2.

We define the spectral gap of µ to be

λ(µ) := ∥Tµ|L2(G)◦∥op,
and inspired by the definition of Lyapunov exponent, we let

L(µ) = − log λ(µ),

where log denotes the base 2 logarithm.
Notice that the chosen name, spectral gap, might be a bit misleading.

Since µ is a symmetric measure, Tµ is a self-adjoint averaging operator; so
the spectrum of Tµ consists of real numbers in [−1, 1]. The absolute value
of eigenvalues of Tµ give us |G| numbers (with multiplicity) in the interval
[0, 1]. The second largest number in this list is λ(µ), and the gap between
λ(µ) and 1 is what we would like to control; clearly, L(µ) gives us a way
to measure this gap. In the literature, it is said that a family {µi}i of
probability measures has the spectral gap property if supi λ(µi) < 1, and so
despite this caveat, we still use λ(µ) to denote the spectral gap of µ.

Note that L(µ) > 0 implies that the support of µ generates G. If X is a
random variable with values in G and distribution µ, we let λ(X) := λ(µ)
and L(X) := L(µ).

The spectral gap λ(µ) gives us a measurement of how fast the random
walk is getting equidistributed in G (at least in L2-norm). To formulate
this, for every finite set A, we let µA be the probability counting measure
on A. Then because, for every probability measure ν on G, the orthogonal
projection of ν onto the constants CµG ⊂ L2(G) is µG, we have that

∥µ∗(ℓ) − µG∥22 = ∥µ∗(ℓ) ∗ (µ{1} − µG)∥22 = ∥T ℓ
µ(µ{1} − µG)∥22

≤ λ(µ)2ℓ∥µ{1} − µG∥22 = 2−2L(µ)ℓ∥µ{1} − µG∥22.
Because of this type of control on convergence to equidistribution, we are

interested in finding a lower bound independent of |G| for L(µ).
In this work, we investigate random walks in G×G. In a forthcoming joint

work of the first author with Mallahi-Karai and Mohammadi [10], a result
in the following framework is proved: if two compact groups G1 and G2 are
drastically different groups, then for a probability measure µ on G1×G2 we
have L(µ) > 0 if L(πL[µ]) > 0 and L(πR[µ]) > 0, where πL : G1 ×G2 → G1

and πR : G1 ×G2 → G2 are projection maps. One cannot expect a similar
result when G1 and G2 have a non-trivial common (topological) quotient.
For instance, consider the case G1 = G2 = G and let µ be the probability
Haar measure of the diagonally embedded ∆(G) of G in G × G. Then
clearly L(πL[µ]) and L(πR[µ]) are positive, but L(µ) = 0. In this example,
however, the support of µ does not generate (a dense subgroup) of G × G.



RANDOM WALKS ON DIRECT PRODUCTS OF GROUPS 3

What if we add this extra algebraic condition? This subtlety is highlighted
by Lindenstrauss and Varjú in [16, Open problem 1.4] in the form of the
following question:

Question 1 (Lindenstruass-Varjú). Suppose S is a symmetric generating
set of SL2(Fp)× SL2(Fp). Is it possible to estimate the spectral gap of µS in
terms of the spectral gaps of the projections to the direct factors and |S|?

In this article we give an affirmative answer to this question.

Theorem 1. Let µ be a symmetric measure on SL2(Fp) × SL2(Fp) such
that L(πL[µ]),L(πR[µ]) ≥ c0 > 0 and the minimum of µ on its support is
α0. If the support of µ generates SL2(Fp) × SL2(Fp) and p ≫c0,α0 1, then
L(µ) ≫c0,α0 1, where the implied constant is a positive number which only
depends on c0 and α0.

In our forthcoming article, we use the results of this work together with
modular representation theory of SL2(Fq), Bourgain-Katz-Tao’s sum-product
result on finite fields, an investigation of certain unipotent group schemes,
Gowers’s theory of quasi-random groups, and Bourgain-Gamburd’s method
of gaining entropy to study random-walks on group extensions. In particular,
we extend Theorem 1, and show that if G is a connected simply-connected
perfect Q-algebraic group and F is a finite field with large enough charac-
teristic, then the spectral gap of a random-walk on G(F ) can be bounded by
the spectral gap of the projection of the random-walk on simple quotients
of G(F ). For the sake of clarity, highlighting our entropy inequality, and
separating more algebraic tools, we have decided to have this special case
as a separate article.

1.2. Applications. Studying spectral gaps of random walks on compact
groups is an extremely interesting subject with many applications. For
instance, it has been used to give an explicit construction of expander graphs,
or recently it has been used in affine sieve and sieve in groups. We refer
the reader to the beautiful surveys by Lubotzky [18] and Kowalski [14] for
details and many more applications. Here first we present a combinatorial
interpretation of Theorem 1 as it is formulated in the abstract, and then
give one application which is new in nature and it is a consequence of our
main result.

1.2.1. Cheeger constant and expander graphs. One of the interesting appli-
cations of the study of spectral gaps of random walks on a family of finite
groups is its connection with the explicit construction of expander graphs.
For a graph with finitely many vertices G = (V,E), the Cheeger constant of
G is defined to be

e(G) = inf
A⊂V,|A|<|V |/2

|∂(A)|/|A|

where ∂(A) is the set of vertices that are not in A but connected to a vertex
in A via an edge. This constant measures how connected the graph G is.
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A family (Gi)i∈I of finite graphs is called an expander family if there exist
positive numbers k and c such that for all i ∈ I, the maximum degree
of a vertex in Gi is at most k and e(Gi) > c. Expander families have an
interesting history and have found applications in various areas of computer
science and mathematics (see [12] and [15]). An expander family gives us a
family of sparse (not many edges attached to a vertex) yet highly connected
(expansion constant bounded below) graphs.

A result of Dodziuk [5] and Alon [1] (see [17, Proposition 4.2.4]) gives an
isoperimetric inequality for regular graphs. In particular, this result implies
that if G is the Cayley graph of a finite group with respect to a symmetric
generating set S, then L(µS) has a positive lower bound in terms of |S| and
the Cheeger constant of G, and conversely the Cheeger constant of G has a
positive lower bound in terms of L(µS) and |S|. Hence Theorem 1 implies
the following.

Theorem 2. Suppose S is a symmetric generating set of SL2(Fp)×SL2(Fp)
where p is a prime number. Let πL and πR be the projections to the left and
the right components of SL2(Fp)× SL2(Fp), respectively. Suppose |πL(S)| =
|πR(S)| = |S|. Let GL and GR be the Cayley graphs of SL2(Fp) with respect
to πL(S) and πR(S), respectively. Suppose the Cheeger constant e(GL) and
e(GR) are at least c0. Then the Cheeger constant of the Cayley grpah of
SL2(Fp) × SL2(Fp) with respect to S is at least a positive number which
depends only on |S| and c0.

Let’s remark that the technical condition on the cardinality of πL(S) and
πR(S) is not needed. The authors in their forthcoming article on random
walks on perfect groups will show that if µ and µ′ are two probability mea-
sures on a finite group that have the same support and the minimum of
µ and µ′ on their support is at least α0, then L(µ) ≪α0 L(µ′) ≪α0 L(µ)
(this is probably well-known to experts). This result allows us to remove
the mentioned technical condition.

1.2.2. Representation and character varieties. Let F2 = ⟨a, b⟩ be the free
group freely generated by a and b. The SL2-representation variety of F2 is
given by the functor

Rep2(A) := Hom(F2, SL2(A))

from the category of unital commutative rings to the category of sets. It is
clear that Rep2(A) can be identified with two copies of SL2(A). The group
SL2 acts on Rep2 by conjugation. The geometric quotient of Rep2 by SL2 is
a variety and by works of Fricke it has an integral model which is denoted
by Ch2. In particular, for every ρ ∈ Rep2(A), we get a point [ρ] ∈ Ch2(A),
and we have [ρ1] = [ρ2] for ρ1, ρ2 ∈ Rep2(A) if there is x ∈ SL2(A) such that
ρ2(y) = xρ1(y)x

−1 for all y ∈ F2 (notice that the converse of this statement
is not correct, but that is not related to our application). For every element
w ∈ F2 and [ρ] ∈ Ch2(A), we let

tw([ρ]) := Tr(ρ(w)).
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By works of Fricke, we can view tw as a regular function on Ch2. For every
positive δ, we let

Rep2(Fp)δ := {ρ ∈ Rep2(Fp) | L(µ{ρ(a)±1,ρ(b)±1}) ≥ δ}.

Note that
⋃

δ>0Rep2(Fp)δ = {ρ ∈ Rep2(Fp) | ρ(F2) = SL2(Fp)}. We can
show that many tw’s can distinguish two distinct points [ρ1] and [ρ2] of
Ch2(Fp) if ρ1, ρ2 ∈ Rep2(Fp)δ.

Corollary 3. Suppose δ is a positive number and ρ1, ρ2 ∈ Rep2(Fp)δ. Sup-
pose a, b freely generate a free group F2. Then there is 0 < β := β(δ) < 1
such that for every positive integer ℓ the following statements hold.

(1) If ρ1 ̸= ρ2, then

µ
∗(ℓ)
{a±1,b±1}({w ∈ F2 | ρ1(w) = ρ2(w)}) ≤ p−1 + βℓ|SL2(Fp)|.

(2) If [ρ1] ̸= [ρ2], then either

µ
∗(ℓ)
{a±1,b±1}({w ∈ F2 | tw([ρ1]) = tw([ρ2])}) ≤ 5p−1 + βℓ| SL2(Fp)|,

or there is an automorphism ϕ̂ of SL2(Fp) such that for every w ∈ F2,

ρ2(w) = ±ϕ̂(ρ1(w)). In the latter case, tw([ρ1]) = ±tw([ρ2]) for every
w ∈ F2.

It is not known whether there is a positive number δ0 such that

Rep2(Fp)δ0 = {ρ ∈ Rep2(Fp) | ρ(F2) = SL2(Fp)}.
So we do not know if Corollary 3 holds for a fixed universal constant β and
every surjective ρ1, ρ2 ∈ Rep2(Fp).

1.3. Proof strategy. Note that since the natural quotient map

ῑ : SL2(Fp)× SL2(Fp) → PSL2(Fp)× PSL2(Fp)

has a kernel of cardinality at most 4, it is enough to prove a similar result
as in Theorem 1 for PSL2(Fp). Let us recall that for a random variable X
with finite support and probability law µ, the Renyi Entropy of X is

H2(X) := − log ∥µ∥22.
Let X = (XL, XR) be a random variable into PSL2(Fp) × PSL2(Fp) with
distribution µ. We assume that µ is symmetric. Suppose that

L(πR[µ]),L(πL[µ]) > c0 > 0,

µ takes a minimum of α0 on its support, and that the support of µ gener-
ates PSL2(Fp) × PSL2(Fp). Let L1 be a large natural number. Using the
Bourgain-Gamburd method (see [3]), we deduce that the only objection to
µ having a spectral gap depending on c0 and L1 is if there exist an auto-
morphism ϕ of PSL2(Fp) and an integer ℓ ≥ L1 log |PSL2(Fp)× PSL2(Fp)|,
such that

(1) P(Xℓ ∈ Γϕ) ≥ |PSL2(Fp)× PSL2(Fp)|−1/26,
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where Γϕ = {(x, ϕ(x))|x ∈ PSL2(Fp)} is the graph of ϕ. Considering the
group of outer automorphisms of PSL2(Fp) has only two elements, we reduce
the general case to the case where ϕ is inner, say that ϕ(x) = zxz−1. Notice
PSL2(Fp)×PSL2(Fp) acts on PSL2(Fp) by the left and right multiplications;
that means (u, v) · x = uxv−1. The graph Γϕ is the stabilizer subgroup of
PSL2(Fp)× PSL2(Fp) with respect to z−1; that means

Γϕ = {(u, v) ∈ PSL2(Fp)× PSL2(Fp) | (u, v) · z−1 = z−1}.
Thus equation (1) turns in to

(2) P(Xℓ · z−1 = z−1) ≥ |PSL2(Fp)× PSL2(Fp)|−1/26

We would like to show that (2) is not possible. Equation (2) suggests that
the Rényi entropy of Xℓ · z−1 should be small. This brings us to studying
H2(Xℓ ·Y ) where Y is a random variable on PSL2(Fp) that has small Renyi

entropy. We note that Xℓ · Y = (XL)ℓY (XR)
−1
ℓ , and we know that (XL)ℓ

and (XR)ℓ are almost equidistributed for ℓ ≫c0 log |PSL2(Fp)|. But we do
not know how (XL)ℓ and (XR)ℓ are correlated. All we know is that the range
of X generates PSL2(Fp)×PSL2(Fp). The following lemma is instrumental
in resolving this issue.

Lemma 4. Suppose G and H are two finite groups, and G acts on H. Let
X(1), X(2) be i.i.d. random variables into a finite group G and Y (1), Y (2) be
i.i.d. random variables into a finite group H. Then we have that

H2((X
(1) · Y (1))−1(X(2) · Y (2))) ≥ H2((X

(1) · Y (1))−1(X(1) · Y (2)))

Lemma 4 is aligned with the general principle which says that reducing
the degree of freedom should decrease the Rényi entropy. Applying Lemma 4
to our random variable X, we get

H2((X
(1) · Y (1))−1(X(2)·Y (2))) ≥ H2((X

(1) · Y (1))−1(X(1) · Y (2)))

=H2((X
(1)
L Y (1)(X

(1)
R )−1)−1(X

(1)
L Y (2)(X

(1)
R )−1)

=H2(X
(1)
R (Y (1))−1Y (2)(X

(1)
R )−1)(3)

Based on (3), we get a lower bound for H2((X
(1) ·Y (1))−1(X(2) ·Y (2))) using

conjugation by XR. Since we have a control on the spectral gap of XR, after
ℓ0 := Oc0(1) steps random walk (XR)ℓ0 gets close to equidistribution. This
implies that conjugation by (XR)ℓ0 spreads the weight almost equally in

the conjugacy classes that intersect the range of (Y (1))−1Y (2). Considering
every conjugacy class of PSL2(Fp) except {1} has at least p elements and Y
has small Renyi entropy, we obtain the following dichotomy:

Either Y is almost concentrated at one point or we gain Rényi entropy
after conjugation by XR.

By gaining Rényi entropy, we mean that for some ε := ε(α0) > 0 and
ℓ0 := Oc0,α0(1) the following holds

H2((XR)ℓ0(Y
(1))−1Y (2)(XR)

−1
ℓ0

) ≥ H2((Y
(1))−1Y (2)) + ε.
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If Y is almost concentrated at one point, we use the assumption that the
range ofX generates PSL2(Fp)×PSL2(Fp) to show the existence of a positive
number ε1 := ε1(α0) such that

H2(X · Y ) ≥ H2(Y ) + ε1.

Altogether we obtain the following lemma.

Lemma 5. Let G := PSL2(Fp) × PSL2(Fp). Suppose X := (XL, XR) is
a random variable with values in G and probability law µ. Suppose α0 :=
min{P(X = x) | x ∈ supp(µ)} and L(XR) ≥ c0 > 0. Suppose that the range
of X generates G. Then there exist constants L,C ≫c0,α0 1 such that for
every random variable Y on PSL2(Fp) and every ℓ ≥ L log |G|

(4) H2(Xℓ · Y ) ≥ 1

12
log |PSL2(Fp)× PSL2(Fp)| − C,

where X · Y := XLY X−1
R and Xℓ is the ℓ-step random walk with respect to

µ.

For large enough p, (4) implies

H2(Xℓ · Y ) ≥ 1

12.5
log |PSL2(Fp)× PSL2(Fp)|.

Therefore for every ℓ ≥ L log |PSL2(Fp)× PSL2(Fp)|, we have

P(Xℓ · z−1 = z−1) ≤ e−
1
2
H2(Xℓ·z−1) ≤ |PSL2(Fp)× PSL2(Fp)|−1/25.

Thus Lemma 5 gives us that Equation (2) cannot hold, and this completes
the proof.

1.4. Acknowledgment. The authors would like to thank the anonymous
referee(s) for their helpful comments.

2. Notation and preliminary results

2.1. Conventions. If f : G → V is a function from a finite group to a
C-vector space and µ is a measure on G, we define∫

G
f(x)dµ(x) :=

∑
x∈G

µ(x)f(x)

We endow L2(G) with the inner product

⟨f, g⟩ =
∑
x∈G

f(x)g(x)

where f, g ∈ L2(G). For f ∈ L2(G), f̌ ∈ L2(G) is given by

f̌(x) = f(x−1).

Note that if X is a random variable with values in G and distribution µ,
then the probability law of X−1 is µ̌.

For a subset A of a finite group G and a positive integer k, we let∏
k A := {a1 · · · ak | a1, . . . , ak ∈ A}.
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2.2. Basics of Fourier analysis for finite groups and quasi-random

groups. Suppose G is a finite group. Then Ĝ denotes the set of irreducible
unitary subrepresentations of the regular representation L2(G). For f ∈
L2(G), the Fourier inverse of f is defined as

f̂(π) :=
1

|G|
∑
g∈G

f(g)π(g)∗,

where π(g)∗ is the adjoint of π(g). For f1, f2 ∈ L2(G), the convolution
of f1 and f2 is defined with respect to the counting measure (and not the
probability counting measure)

f1 ∗ f2(x) =
∑

x1x2=x

f1(x1)f2(x2),

and we have

(5) f̂1 ∗ f2(π) = |G|f̂2(π)f̂1(π)

for every π ∈ Ĝ. The Parseval theorem states that

(6) ∥f∥2
2̃
=

∑
π∈Ĝ

dimπ ∥f̂(π)∥2HS,

where ∥f∥2
2̃
:= 1

|G|
∑

g∈G |f(g)|2 and the Hilbert-Schmidt norm ∥T∥2HS =

Tr(TT ∗).
Let’s recall Gowers’s notion of quasi-randomness and its consequences to

the study of random-walks(see [11]).1

Definition. For a positive number c, we say a finite group G is c-quasi-

random if dimπ ≥ |G|c for every non-trivial π ∈ Ĝ.

The following mixing inequality is one of the main properties of a quasi-
random group (see [2, Theorem 2.1], [11], and [9, Lemma 6.1]).

Lemma 6. Suppose c is a positive number and G is a c-quasi-random group.
Then for every f1 ∈ L2(G) and f2 ∈ L2(G)◦ the following inequality holds,

∥f1 ∗ f2∥2 ≤ |G|(1−c)/2∥f1∥2∥f2∥2.

Proof. By the Parseval theorem (see (6)) and (5), we obtain that

∥f1 ∗ f2∥22̃ =
∑
π∈Ĝ

dimπ ∥f̂1 ∗ f2(π)∥2HS = |G|2
∑

π∈Ĝ,π ̸=1

dimπ ∥f̂2(π)f̂1(π)∥2HS

≤|G|2−c
(∑

π∈Ĝ

dimπ ∥f̂2(π)∥2HS

)(∑
π∈Ĝ

dimπ ∥f̂1(π)∥2HS

)
≤|G|2−c∥f1∥22̃∥f2∥

2
2̃
.

Hence ∥f1 ∗ f2∥22 ≤ |G|1−c∥f1∥22∥f2∥22, and the claim follows. □

1It should be pointed out that in [19], Sarnak and Xue had implicitly used the concept
of quasi-randomness in order to prove a spectral gap property.
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As it was pointed out in the introduction, whenX is a symmetric random-
variable with law µ, Tµ : L2(G) → L2(G), Tµ(f) := f ∗ µ is a self-adjoint
operator, and λ(µ) is the maximum of the absolute values of eigenvalues of
Tµ|L2(G)◦ : L2(G)◦ → L2(G)◦. Hence one can see that

L(µ(ℓ)) = ℓL(µ)

for every positive integer ℓ.

Lemma 7. Suppose c is a positive number and G is a c-quasi-random group.
Suppose X is a symmetric random-variable with values in G. Then

(1) H2(X) ≥ (1− c
2) log |G| implies L(X) ≥ c

4 log |G|.
(2) Suppose Xℓ is the random variable after ℓ-step random walk with

respect to X. Suppose C > 0, and H2(Xℓ) ≥ (1 − c
2) log |G| for a

positive integer ℓ ≤ C log |G|. Then L(X) ≥ c
4C .

Proof. Suppose µ is the probability law of X; that means µ(x) := P(X = x)
for every x ∈ G. By Lemma 6, for every function f ∈ L2(G)◦, the following
holds,

∥µ ∗ f∥2 ≤ |G|(1−c)/2∥µ∥2∥f∥2.
Hence

L(µ) ≥ −1 + c

2
log |G|+ 1

2
H2(X) ≥ c

4
log |G|.

This implies the first part. Next applying the first part for the random
variable Xℓ, we deduce

C log |G|L(µ) ≥ ℓL(µ) ≥ c

4
log |G|,

and the second part follows. □

2.3. Group action and convolution. When a finite group G acts on a
finite set H, we write G ↷ H. An action of G on H induces an action of G
on L2(H) by

(x · f)(y) = f(x−1 · y)
for x ∈ G, y ∈ H, f ∈ L2(H). This is a unitary action and this way we can
view L2(H) as a C[G]-module. Given µ ∈ L2(G), f ∈ L2(H), we define

µ⊠ f =
∑
x∈G

µ(x)(x · f) =
∫
G
(x · f)dµ(x).

Note that if X is a random variable with values in G and distribution µ, Y
is a random variable with values in H and distribution η, and X and Y are
independent, then the distribution of X · Y is µ⊠ η. Notice that the group
action properties give us the following relations. If µ, ν ∈ L2(G), f ∈ L2(H)
then

µ⊠ (ν ⊠ f) = (µ ∗ ν)⊠ f.
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Moreover ⊠ : L2(G)×L2(H) → L2(H), (µ, f) 7→ µ⊠f is a bilinear map. We
call ⊠ the convolution associated to G ↷ H. Notice that for the counting
probability measure µG on G,

µG ⊠ · : L2(H) → L2(H), f 7→ µG ⊠ f

is the orthogonal projection of L2(H) onto the space L2(H)G of G-invariant
functions in L2(H). Thus f 7→ f − µG ⊠ f is the orthogonal projection
from L2(H) to the space (L2(H)G)⊥ orthogonal to the space of G-invariant
functions. We also observe that if µ{1} is the point mass at the identity,

then f = µ{1}⊠f for every f ∈ L2(H). Therefore the orthogonal projection

from L2(H) to the space (L2(H)G)⊥ is given by

(7) f 7→ (µ{1} − µG)⊠ f.

Notice that every irreducible subrepresentation V of (L2(H)G)⊥ is non-
trivial, and so by Maschke’s theorem [6, Theorem 4.1.1], there is a G-module
isometric embedding i : V → L2(G)◦. Hence for every probability measure
µ on G and f ∈ V , we have

∥µ⊠ f∥2 = ∥iV (µ⊠ f)∥2 = ∥µ ∗ iV (f)∥2
≤ λ(µ)∥iV (f)∥2 = λ(µ)∥f∥2.(8)

Considering (L2(H)G)⊥ is a direct sum of pairwise orthogonal irreducible
subrepresentations, by (8), we obtain that ∥µ ⊠ f∥2 ≤ λ(µ)∥f∥2 for every
f ∈ (L2(H)G)⊥. Combining this result with (7), we deduce that

∥(µ− µG)⊠ f∥2 = ∥(µ ∗ (µ{1} − µG))⊠ f∥2 = ∥µ⊠ ((µ{1} − µG)⊠ f)∥2
≤ λ(µ)∥(µ{1} − µG)⊠ f∥2 ≤ λ(µ)∥f∥2,(9)

for every f ∈ L2(H).

3. An inequality for the Renyi entropy of random variables

The aim of this section is to prove Lemma 4. Let’s recall that in the setting
of Lemma 4, we have two finite groups G and H, and G acts on H. There
are i.i.d. random variables X(1), X(2) with values in G and distribution µ,
and i.i.d. random variables Y (1), Y (2) with values in H and distribution η.
In this section, we work with the (non-normalized) counting measure mH

on H.
We start with two sets of convolution identities. The first one is well-

known and the second one is based on the fact that ∗ is bilinear.

Lemma 8. In the above setting, for f, g, h ∈ L2(H), the following identities
hold:

(1) f ∗ (g ∗h) = (f ∗g)∗h, ⟨f ∗g, h⟩ = ⟨f, h∗ ǧ⟩ and ⟨f ∗g, h⟩ = ⟨g, f̌ ∗h⟩,
(2) (µ⊠ f) ∗ (µ⊠ g) =

∫
G2(u · f) ∗ (v · g) d(µ⊗2)(u, v).
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Proof. Both parts easily follow from switching the order of summations.
Here we only discuss the second part. The second part follows from the fact
that µ⊠ f =

∫
G(x · f)dµ(x) and ∗ is bilinear:

(µ⊠ f) ∗ (µ⊠ g) =
( ∫

G
(u · f)dµ(u)

)
∗
( ∫

G
(v · g)dµ(v)

)
=

∫
G2

(u · f) ∗ (v · g) dµ⊗2(u, v).

This completes the proof. □

We will be working with a new norm on L2(H) that we denote by ||| · |||
and it can be viewed as a non-commutative version of Gowers’s U2-norm.
We will show that this norm is preserved by shifted-automorphism group
actions G ↷ H.

Definition. Suppose G and H are two groups. An action G ↷ H is called
a shifted-automorphism group action if there are a group homomorphism
ϕ : G → Aut(H) and a function c : G → H such that x · y = c(x)(ϕ(x))(y)
for every x ∈ G and y ∈ H.

Notice that for every group H, the group action H × H ↷ H given by
(xL, xR) · y := xLyx

−1
R is a shifted-automorphism group action as

xLyx
−1
R = c(xL, xR)ϕ(xL, xR)(y)

where c(xL, xR) = xLx
−1
R and ϕ : H ×H → Aut(H) is a group homomor-

phism given by

ϕ(xL, xR)(y) := xRyx
−1
R .

Lemma 9. Suppose H is a finite group. Let |||f ||| := ∥f̌∗f∥1/22 for f ∈ L2(H).
Then the following statements hold.

(1) ||| · ||| is a norm and ∥f∥2 ≤ |||f ||| for every non-negative f ∈ L2(H).
(2) Suppose G ↷ H is a shifted-automorphism group action. Then for

every x ∈ G and f ∈ L2(H), we have |||x · f ||| = |||f |||.
(3) Suppose G ↷ H is a shifted-automorphism group action and µ is

a probability measure on G. Then we have that |||µ ⊠ f ||| ≤ |||f ||| for
every f ∈ L2(H).

Proof. (1) For every g ∈ L2(H), the convolution operator

Tg : L2(H) → L2(H), Tg(h) := g ∗ h

is an integral operator with the kernelKg : H×H → C,Kg(x, y) := g(xy−1).
Therefore the Hilbert-Schmidt norm ∥Tg∥HS is equal to ∥Kg∥2 (see [4, Chap-
ter II, Proposition 4.7]). Notice that

∥Kg∥22 =
∑

x,y∈H
|g(x−1y)|2 = |H|∥g∥22,
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and so ∥Tg∥HS = |H|1/2∥g∥2. Hence

(10) |||f ||| = ∥f̌ ∗ f∥1/22 = |H|−1/4∥Tf̌∗f∥
1/2
HS .

By Lemma 8, we have T ∗
f = Tf̌ . Hence by (10), we obtain that

(11) |||f ||| = |H|−1/4∥T ∗
f ◦ Tf∥

1/2
HS .

For an operator T : L2(H) → L2(H), let |||T ||| := ∥T ∗ ◦ T∥1/2HS . Notice that if
σ1, . . . , σn are the singular values of T , then

(12) |||T ||| = (σ4
1 + · · ·+ σ4

n)
1/4.

By (12) and [13, Theorem 7.4.24], we have that ||| · ||| is a unitarily invariant
norm on EndC(L

2(H)). Therefore by (10) for every f, g ∈ L2(H), we have
that

|||f + g||| = |H|−1/4|||Tf + Tg||| ≤ |H|−1/4|||Tf |||+ |H|−1/4|||Tg||| = |||f |||+ |||g|||.

For every c ∈ C and f ∈ L2(H), clearly we have |||cf ||| = |c||||f |||, and |||f ||| = 0
implies that f = 0. Hence ||| · ||| is a norm on L2(H). For two non-negative
functions f and g, we have

∥f ∗ g∥22 =
∑
x

(f ∗ g)(x)2 =
∑
x

( ∑
x1x2=x

f(x1)g(x2)
)2

≥
∑
x

∑
x1x2=x

f(x1)
2g(x2)

2 = ∥f∥22∥g∥22,

and so ∥f ∗ g∥2 ≥ ∥f∥2∥g∥2. Therefore for a non-negative function f , we
have

|||f ||| = ∥f̌ ∗ f∥1/22 ≥ (∥f̌∥2∥f∥2)1/2 = ∥f∥2.
(2) Notice that {µ{y}}y∈H is an orthonormal basis of L2(H), and for y, y′

in H and f ∈ L2(H), the (y, y′)-matrix entry of Tf is f(yy′−1). Hence the
(y, y′)-matrix entry of Tx·f is

(13) f(x−1 · (yy′−1)) = f
(
c(x−1) (ϕ(x−1))(y) (ϕ(x−1))(y′)−1

)
,

where ϕ : G → Aut(H) and c : G → H give us the shifted-automorphism
group action G ↷ H. By (13), we obtain that the (y, y′)-entry of Tx·f is
equal to the ((ϕ(x−1))(y), (ϕ(x−1))(y′))-matrix entry of Tcx·f where cx :=
c(x−1)−1 ∈ H and (cx · f)(y) = f(c−1

x y) for every y ∈ H. For every x ∈ G,
let σ(x) : L2(H) → L2(H) be the unitary operation given by (σ(x)(f))(y) :=
f(ϕ(x)−1(y)). Then by the above discussion, we deduce that

(14) Tx·f = σ(x) ◦ Tcx·f ◦ σ(x)−1.

For every y ∈ H, let l(y) : L2(H) → L2(H), (l(y))(f) := y · f . Then l(y) is
a unitary map and Ty·f = l(y) ◦ Tf . Hence by (14), we obtain that

(15) Tx·f = σ(x) ◦ l(cx) ◦ Tf ◦ σ(x)−1.
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Therefore by [13, Theorem 7.4.24] and (15), we conclude that |||Tx·f ||| = |||Tf |||,
and so

|||x · f ||| = |H|−1/4|||Tx·f ||| = |H|−1/4|||Tf ||| = |||f |||.
(3) For every probability measure µ on G, by the first two parts we have:

|||µ⊠ f ||| ≤ |||
∑
x∈G

µ(x)x · f ||| ≤
∑
x∈G

µ(x)|||x · f ||| = |||f |||.

This completes the proof. □

The following inequality plays an important role in proving Lemma 4.

Lemma 10. We have that |||µ⊠ f |||2 ≤ ∥
∫
G

­(u · f) ∗ (u · f) dµ(u)∥2.

Proof. Observe that µ ⊠ f =
∫
G(x · f)dµ(x) and ­µ⊠ f =

∫
G

~x · fdµ(x).
Therefore similar to the second part of Lemma 8, we have

(16) (µ⊠ f) ∗ (­µ⊠ f) =

∫
G2

(u · f) ∗ ( }v · f) dµ⊗2(u, v).

By (16) and the semi-linearity of the dot product, we obtain that

∥(µ⊠ f)∗(­µ⊠ f)∥22 =∫
G4

〈
(u1 · f) ∗ (~v1 · f), (u2 · f) ∗ (~v2 · f)

〉
dµ⊗4(u1, v1, u2, v2).(17)

Let c : G4 → C, c(u1, v1, u2, v2) :=
〈
(u1 · f) ∗ (~v1 · f), (u2 · f) ∗ (~v2 · f)

〉
.

Then by the Cauchy-Schwarz inequality, we have ∥c∥1 ≤ ∥c∥2 with respect
to the probability measure µ⊗4, and so by (17), we deduce that

(18) ∥(µ⊠ f) ∗ (­µ⊠ f)∥22 ≤
(∫

G4

|c|2 dµ⊗4

)1/2

.

Another application of the Cauchy-Schwarz inequality implies that

|c(u1, v1, u2, v2)|2 ≤∥(u1 · f) ∗ (~v1 · f)∥22∥(u2 · f) ∗ (~v2 · f)∥22
= = c(u1, v1, u1, v1)c(u2, v2, u2, v2).(19)

By (18) and (19), we obtain that

∥(µ⊠ f) ∗ (­µ⊠ f)∥22 ≤
(∫

G4

c(u1, v1, u1, v1)c(u2, v2, u2, v2) dµ
⊗4

)1/2

=

∫
G2

c(u, v, u, v)dµ⊗2.(20)

Notice that by the first part of Lemma 8 for every u, v ∈ G, we have
(21)

c(u, v, u, v) =
〈
(u·f)∗( }v · f), (u·f)∗( }v · f)

〉
=

〈
(~u · f)∗(u·f), ( }v · f)∗(v ·f)

〉
.
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By (20), (21), and the semi-linearity of the dot product, we deduce that

∥(µ⊠ f) ∗ (­µ⊠ f)∥22 ≤
∫
G2

〈
(~u · f) ∗ (u · f), ( }v · f) ∗ (v · f)

〉
dµ⊗2(u, v)

=
〈 ∫

G
(~u · f) ∗ (u · f) dµ(u),

∫
G
( }v · f) ∗ (v · f) dµ(v)

〉
.(22)

By (22), we conclude that ∥(µ⊠ f) ∗ (­µ⊠ f)∥2 ≤ ∥
∫
G(

~u · f) ∗ (u · f) dµ(u)∥2
which completes the proof. □

We finish this section by proving Lemma 4.

Proof of Lemma 4. Note that the law of (X(1) · Y (1))−1(X(1) · Y (2)) is given
by ∫

G

­(u · η) ∗ (u · η)dµ(u),

and the law of (X(1) · Y (1))(X(2) · Y (2))−1 is given by

(µ⊠ η) ∗ (­µ⊠ η).

Therefore by Lemma 10 we conclude that

H2((X
(1) · Y (1))−1(X(2) · Y (2))) = H2((X

(1) · Y (1))(X(2) · Y (2))−1)

≥ H2((X
(1) · Y (1))−1(X(1) · Y (2))),

which finishes the proof. □

Corollary 11. Suppose H is a finite group, µ is a probability measure on
H ×H, and η is a probability measure on H. Consider the action

H ×H ↷ H given by (xL, xR) · y := xLyx
−1
R

and the conjugation action H ↷ H. Accordingly define ⊠ from L2(H×H)×
L2(H) to L2(H) and ⊠ from L2(H)× L2(H) to L2(H). Then

|||µ⊠ η|||2 ≤ ∥πR[µ]⊠ (η̌ ∗ η)∥2
where πR : H ×H → H is the projection to the right component.

Proof. Suppose X(1) := (X
(1)
L , X

(1)
R ) and X(2) := (X

(2)
L , X

(2)
R ) are two inde-

pendent random variables with probability law µ, and Y (1) and Y (2) are two
independent random variables with probability law η. Applying Lemma 4
for the given group action H ×H ↷ H, we obtain that

(23) H2((X
(1) · Y (1))(X(2) · Y (2))−1) ≥ H2((X

(1) · Y (1))−1(X(1) · Y (2))).

Notice that (X(1) · Y (1))−1(X(1) · Y (2)) = X
(1)
R Y (1)−1

Y (2)X
(1)
R

−1
, and so the

distribution of this random variable is given by

(24) πR[µ]⊠ (η̌ ∗ η).
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We also notice that the distribution of (X(1) · Y (1))(X(2) · Y (2))−1 is given

by (µ⊠ η) ∗ (­µ⊠ η). Hence by (23), we conclude that

∥(µ⊠ η) ∗ (­µ⊠ η)∥2 ≤ ∥πR[µ]⊠ (η̌ ∗ η)∥2
which completes the proof. □

4. An escaping lemma

The main goal of this section is to prove Lemma 5. Our approach is in-
spired by a method of Lindenstrauss and Varjú developed in [16]. In this sec-
tion, we will be working with the action PSL2(Fp)× PSL2(Fp) ↷ PSL2(Fp)
given by (u, v)·x = uxv−1, and the conjugation action PSL2(Fp) ↷ PSL2(Fp)
given by x · y = xyx−1. We reformulate the statement of Lemma 5 in terms
of distributions.

Lemma 12. Let µ be a measure on PSL2(Fp) × PSL2(Fp). Suppose that
the minimum of µ on its support is at least α0 > 0 and L(πR[µ]) ≥ c0 > 0,
where πR : PSL2(Fp) × PSL2(Fp) → PSL2(Fp) is the projection to the right
component. Suppose that the support of µ generates PSL2(Fp)× PSL2(Fp).
Then there exist constants L,C ≫c0,α0 1 such that for every probability
measure η on PSL2(Fp) and every integer ℓ ≥ L log p

∥µ∗(ℓ) ⊠ η∥2 ≤ C|PSL2(Fp)× PSL2(Fp)|−1/24.

We start by proving that if η̌ ∗ η is almost a point mass at the identity,
then η is almost a point mass. Here, a measure is viewed as almost a point
mass if a single point is responsible for a κ portion of its L2-norm. This
lemma is essentially proved in [16, Lemma 5].

Lemma 13. Suppose that η is a probability measure on a finite group H
and ∥η∥∞ ≤ κ∥η∥2 where κ is a positive number. Then we have that

|||η|||2 ≥
√

2− κ2 η̌ ∗ η(1).

Proof. Notice that

(25) η̌ ∗ η(1) =
∑
y∈H

η̌(y−1)η(y) =
∑
y∈H

η(y)2 = ∥η∥22.

Next by a simple computation we obtain∑
y∈H\{1}

η̌∗η(y)2 =
∑
y ̸=1

( ∑
y1y2=y

η̌(y1)η(y2)
)2 ≥ ∑

y ̸=1

∑
y1y2=y

η̌(y1)
2η(y2)

2

=
(∑

y1

η̌(y1)
2
)(∑

y2

η(y2)
2
)
−
∑
y2

η̌(y−1
2 )2η(y2)

2 = ∥η∥42 − ∥η∥44.(26)

On the other hand, because κ∥η∥2 ≥ ∥η∥∞, we deduce that

(27) ∥η∥44 =
∑
y

η(y)4 ≤ ∥η∥2∞∥η∥22 ≤ κ2∥η∥42.



16 ALIREZA SALEHI GOLSEFIDY AND SRIVATSA SRINIVAS

By (25), (26), and (27), we obtain that

∥η̌ ∗ η∥22 ≥η̌ ∗ η(1)2 + (∥η∥42 − ∥η∥44) ≥ ∥η∥42 + (∥η∥42 − κ2∥η∥42)
=(2− κ2) η̌ ∗ η(1)2.(28)

This completes the proof. □

Next we show that if Z is a random variable with values in PSL2(Fp) and
uniform distribution and Y is an independent random variable with values
in PSL2(Fp), then

H2(ZY Z−1) ≥ min{−2 log(P(Y = 1)), log p} − 2 log 2.

Notice that since P(ZY Z−1 = 1) = P(Y = 1), H2(ZY Z−1) ≤ −2 log(P(Y =
1)). Similar to the previous lemmas in this section, we formulate the lemma
in terms of distributions.

Lemma 14. Let H := PSL2(Fp) and µH be the probability counting measure
on H. Suppose η is a probability measure on H. Consider the conjugation
action H ↷ H given by z · y := zyz−1, and let µH ⊠ η be the convolution
associated to the the conjugation action. Then we have that

∥µH ⊠ η∥2 ≤ η(1) + p−1/2.

Proof. For every x ∈ H, let Cl(x) be the conjugacy class of x. Since H
is generated by its elements of order p, for every proper subgroup K ⊊ H
we have that [H : K] ≥ p. Hence for every x ∈ H, either |Cl(x)| ≥ p or
Cl(x) = {x}. The latter holds exactly when x is in the center Z(H) of H.
Notice that Z(H) = {1}, and so for every x ∈ H \ {1}
(29) |Cl(x)| ≥ p.

Let’s recall that for every A ⊆ H, µA denotes the probability counting
measure on A. Notice that for every x ∈ H, we have

µH ⊠ µ{x} = µCl(x).

Hence by the bilinearity of ⊠, we have

(30) µH ⊠ η =
∑
x∈H

η(x)µCl(x) =
∑

c∈Conj(H)

η(c)µc,

where Conj(H) is the set of all the conjugacy classes of H. By (30), the
triangle inequality, and (29), we conclude that

∥µH ⊠ η∥2 ≤
∑

c∈Conj(H)

η(c)∥µc∥2 =
∑

c∈Conj(H)

η(c)|c|−1/2

≤η(1) + η(H \ {1}) p−1/2.

This completes the proof. □

Before proving Lemma 5, we show a lemma on symmetric generating sets
of a finite group.
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Lemma 15. Suppose S is a symmetric generating set of a group G. Suppose
G acts on a set Ω and there are distinct points x1, x2 ∈ Ω such that for every
s ∈ S, s · x1 = x2. Then G has a subgroup of index 2.

Proof. By assumption for every s ∈ S, we have s−1 · x2 = x1. Because
S is symmetric, we deduce that for every s ∈ S, s · x2 = x1. Hence for
every s1, . . . , sk ∈ S, we have that (s1 . . . sk) · x1 ∈ {x1, x2}. On other hand,
because S is a symmetric generating set of G, G = {1}∪

⋃∞
k=1

∏
k S; and so

the G-orbit of x1 has exactly two points. Therefore the stabilizer subgroup
of G with respect to x1 is of index 2. This completes the proof. □

Notice that PSL2(Fp) is generated by its p-elements, and so if p > 2,
PSL2(Fp) does not have a subgroup of order 2.

In the rest of this section, we prove Lemma 12 which is a reformulation
of Lemma 5.

Proof of Lemma 12. Let’s recall that α0 is the minimum of µ in its support.
Choose 0 < κ0 < 1 such that

√
α2
0 + (1− α0)2 +

√
1− κ20 < 1. Let η be the

probability law of Y . We are going to consider two cases mostly depending
on whether or not η is almost a point mass or not.

Case 1. Suppose that ∥η∥∞/∥η∥2 > κ0.
In this case, there exists x0 ∈ PSL2(Fp) such that η(x0)

2 > κ20∥η∥22. Let

η⊥x0
:= η1PSL2(Fp)\{x0} where 1PSL2(Fp)\{x0} is the characteristic function of

PSL2(Fp) \ {x0}. Notice that

(31) η = η(x0)µ{x0} + η⊥x0
and µ{x0} ⊥ η⊥x0

.

By (31), we have that ∥η∥22 = η(x0)
2 + ∥η⊥x0

∥22, and so

(32) ∥η⊥x0
∥22 < (1− κ20)∥η∥22.

Moreover, by (31), we obtain that µ⊠ η = η(x0) µ⊠µ{x0}+µ⊠ η⊥x0
. Notice

that

µ⊠ µ{x0} =
∑

y∈PSL2(Fp)×PSL2(Fp)

µ(y)µ{y·x0}

=
∑

yGx0∈G/Gx0

µ(yGx0)µy·x0 ,
(33)

where G := PSL2(Fp) × PSL2(Fp) and Gx0 is the stabilizer subgroup of G
with respect to x0. Since the support of µ is a symmetric generating set
of PSL2(Fp) × PSL2(Fp) and the minimum of µ on its support is α0, by
Lemma 15 and (33) we conclude that

(34) ∥µ⊠ µ{x0}∥2 ≤ (α2
0 + (1− α0)

2)1/2.
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Therefore by the triangle inequality, (34), and (32), we conclude that

∥µ⊠ η∥2 ≤ η(x0)∥µ⊠ µ{x0}∥2 + ∥µ⊠ η⊥x0
∥2

≤ η(x0)(α
2
0 + (1− α0)

2)1/2 + ∥η⊥x0
∥2

≤
(
(α2

0 + (1− α0)
2)1/2 + (1− κ20)

1/2
)
∥η∥2(35)

Case 2. Suppose that ∥η∥∞/∥η∥2 ≤ κ0.

Choose 0 < κ1 < 1 such that (2−κ20)
−1/2+2κ1 < 1. Since L(πR[µ]) > c0,

there is a positive integer ℓ0 which is bounded by a function of c0 (and κ1)

such that λ(πR[µ]
∗(ℓ0)) < κ1. Set H := PSL2(Fp) and ν := µ∗(ℓ0), and so

λ(πR[ν]) < κ1. Then by Corollary 11, we obtain that

(36) |||ν⊠η|||2 ≤ ∥πR[ν]⊠(η̌∗η)∥2 ≤ ∥(πR[ν]−µH)⊠(η̌∗η)∥2+∥µH⊠(η̌∗η)∥2.

By (36), (9), and Lemma 14, we deduce that

(37) |||ν ⊠ η|||2 ≤ κ1|||η|||2 + η̌ ∗ η(1) + p−1/2.

By (37) and Lemma 13, we have that

(38) |||ν ⊠ η|||2 ≤ κ1|||η|||2 + (2− κ20)
−1/2|||η|||2 + p−1/2.

Next we combine the inequalities in (35) and (38). Suppose β is a positive
number less than 1 which is more than

max
{
(2− κ20)

−1/2 + 2κ1, (α
2
0 + (1− α0)

2)1/2 + (1− κ20)
1/2

}
.

Then by (35) and (38), at least one of the following three inequalities hold.
Either

(39) ∥ν⊠η∥2 ≤ β∥η∥2, or |||ν⊠η|||2 ≤ β|||η|||2, or |||η|||2 ≤ κ−1
1 p−1/2.

Applying (39) repeatedly, by Lemma 9, we conclude that for every integer
ℓ ≥ 2 log p/(− log β) at least one of the following three inequalities hold.
Either

∥ν∗(ℓ) ⊠ η∥2 <βℓ/2 ≤ 1/p or

|||ν∗(ℓ) ⊠ η|||2 <βℓ/2 ≤ 1/p or

|||ν∗(ℓ) ⊠ η|||2 <κ−1
1 p−1/2.

(40)

By Lemma 9 part (1) and (40), for every ℓ ≥ 2 log p/(− log β) the following
holds

∥ν∗(ℓ) ⊠ η∥2 ≤ κ
−1/2
1 p−1/4.

Since |PSL2(Fp)× PSL2(Fp)| ≤ p6, we conclude that

∥ν∗(ℓ) ⊠ η∥22 ≤ κ−1
1 |PSL2(Fp)× PSL2(Fp)|−1/12,

which completes the proof. □
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5. Proving the main result.

In this section, we will be using the Bourgain-Gamburd method to prove
Theorem 1 based on Lemma 5. Bourgain and Gamburd in their seminal
work (see [3]) laid out a blueprint for finding a bound for the spectral gap of
a random-walk in a (single scale) finite group. One of the important results
that they proved is the following proposition (see [3], [20], [8], [9]).

Proposition 16. Let G be a finite group. Suppose X and Y are two inde-
pendent random variables with values in G, and K ≥ 2. If

H2(XY ) ≤ H2(X) +H2(Y )

2
+ logK,

then there exist A ⊆ G and a universal fixed positive number R with the
following properties

(1) (Approximate structure) A is a KR-approximate subgroup; by this
we mean A is symmetric, 1 ∈ A, and there is a subset B of A · A
such that |B| ≤ KR and A ·A ⊆ B ·A ∩A ·B.

(2) (Controlling the size) | log |A| −H2(X)| ≤ R logK.
(3) (Almost equidistribution) For every a ∈ A,

P(X ′X = a) ≥ 1

KR|A|
where X ′ is an independent random variable that has an identical
distribution with X−1.

where R is a fixed number.

In this section, first using Proposition 16, we will prove the following
lemma.

Lemma 17. Let ε > 0 and H := SL2(Fp). Suppose Y := (YL, YR) is a
random variable with values in H × H, distribution P, and the following
properties:

(1) (Close to a coupling) For every y ∈ H, P(YL = y) ≤ 2|H|−1 and
P(YR = y) ≤ 2|H|−1.

(2) (Room for improvement) H2(Y ) ≤ (1− ε) log |H ×H|.
Then there is a positive number γ0 depending on ε and a universal positive
constant R such that for every positive γ ≤ γ0 at least one of the following
statements hold.

(0) (Exceptional cases) |H|Rγ ≤ 2.
(1) (Gaining entropy) H2(Y2) ≥ H2(Y ) + γ log |H ×H| where Y2 is the

2-step random walk with respect to P.
(2) (Graph of an automorphism) P(ῑ(Y2) ∈ Γϕ) ≥ |H ×H|−Rγ for some

automorphism ϕ of PSL2(Fp), where

ῑ : H ×H → PSL2(Fp)× PSL2(Fp), ῑ(xL, xR) := ({±xL}, {±xR})
and Γϕ := {(x, ϕ(x)) | x ∈ PSL2(Fp)}.
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Using Lemma 17, Lemma 5, and Lemma 7, Theorem 1 will be proved.

Proof of Lemma 17. Suppose γ ≤ γ0, where γ0 is a sufficiently small posi-
tive number to be specified later. Let’s assume that we are not in the ex-
ceptional cases and we do not gain enough entropy ; that means |H|Rγ > 2
and H2(Y2) < H2(Y ) + γ log |H × H|. Then by Proposition 16, we obtain
that there is an |H ×H|Rγ-approximate subgroup A such that

(41) | log |A| −H2(Y )| ≤ Rγ log |H ×H| and P(Y2 ∈ A) ≥ |H ×H|−Rγ .

Notice that by the close to a coupling condition, we have

P((YL)2 ∈ πL(A)) ≤ 2|πL(A)||H|−1.

Therefore, we obtain

|H ×H|−Rγ ≤ P(Y2 ∈ A) ≤ P((YL)2 ∈ πL(A)) ≤ 2|πL(A)||H|−1.

A similar result holds for the projection to the right copy of H. Hence

(42) |πL(A)| ≥ |H|1−3Rγ and |πR(A)| ≥ |H|1−3Rγ .

Notice that by a result of Frobenius [7], degree of every non-trivial irre-
ducible representation of SL2(Fp) is at least (p − 1)/2, and so there exists
a positive number c1 such that for all primes p ≥ 5, SL2(Fp) is c1-quasi-
random. Therefore by a result of Gowers (see [11] and [2]) and (42), for
γ < c1/(9R), we have that

(43)
∏

3 πL(A) = SL2(Fp) and
∏

3 πR(A) = SL2(Fp).

Claim 1. In the above setting, for a small enough γ0 depending only on ε,
we have∏

9A∩ (H×{±1}) ⊆ {(±1,±1)} and
∏

9A∩ ({±1}×H) ⊆ {(±1,±1)}.
Proof of Claim 1. It is clear that by symmetry it is enough to prove only

one of the inclusions. Suppose to the contrary that, we have (x, e) is in
∏

9A,
for some x ∈ SL2(Fp) \ {±1} and e ∈ {±1}. Since πL(

∏
3A) = SL2(Fp), we

obtain that

(44) Cl(x)× {e} ⊆
∏

15A.

By [21, Theorem 2.2 and 2.3], we have that
∏

3Cl(x) = SL2(Fp), for every
prime p ≥ 5. Therefore, by (44), we deduce that SL2(Fp) × {1} ⊆

∏
90A.

Hence by (43), we obtain that

(45)
∏

93A = SL2(Fp)× SL2(Fp).

Because A is an |H ×H|Rγ-approximate subgroup,

(46) |
∏

93A| ≤ |H ×H|92Rγ |A|.
Thus by (45) and (46), we conclude that

(47) |A| ≥ |H ×H|1−92Rγ .

By the condition on the room for improvement and (41), we deduce that

(48) |A| ≤ |H ×H|1−ε+Rγ .



RANDOM WALKS ON DIRECT PRODUCTS OF GROUPS 21

By (47) and (48), we reach to a contradiction if γ < ε/93R. This completes
proof of Claim 1.
Claim 2. Let ι : SL2(Fp) → PSL2(Fp), ι(x) := {±x} and A := ι(A). Then

there is an automorphism ϕ : PSL2(Fp) → PSL2(Fp) such that
∏

3A = Γϕ.

Proof of Claim 2. By (43), for every x ∈ SL2(Fp), there is ϕ̃(x) ∈ SL2(Fp)

such that (x, ϕ̃(x)) is in
∏

3A. Since A is a symmetric set, for every x, y ∈
SL2(Fp) we obtain that

(49) (1, ϕ̃(x)ϕ̃(y)ϕ̃(xy)−1) = (x, ϕ̃(x))(y, ϕ̃(y))(xy, ϕ̃(xy))−1 ∈
∏

9A.

By (49) and Claim 1, we deduce that ϕ̃(xy) = ±ϕ̃(x)ϕ̃(y) for every x, y in
SL2(Fp). Notice that for every x ∈ SL2(Fp), (x, y) ∈

∏
3A implies that

(1, ϕ̃(x)y−1) ∈
∏

9A. Hence by Claim 1, we have y = ±ϕ̃(x). Let

ϕ : PSL2(Fp) → PSL2(Fp), ϕ({±x}) := {±ϕ̃(x)}.

Notice that because ϕ̃(xy) = ±ϕ̃(x)ϕ̃(y), we have that ϕ is a well-defined
group homomorphism. By (43), we deduce that ϕ is surjective, and Claim
1 implies that ϕ is injective. Altogether we conclude that ϕ is an auto-
morphism of PSL2(Fp) and ι(

∏
3A) = Γϕ. This completes proof of Claim

2.
By Claim 2 and (41), we conclude that P(ῑ(Y2) ∈ Γϕ) ≥ |H × H|−Rγ ,

which completes the proof. □

Proof of Theorem 1. Because L(πL[µ]) and L(πR[µ]) are at least c0, by the
Cauchy-Schwarz inequality and (9), for ℓ0 ≥ (2 log | SL2(Fp)|)/c0, we have

∥πL[µ]∗(ℓ0) − µH∥∞ =∥((πL[µ]∗(ℓ0) − µH) ∗ µ{1}) ∗ µ{1}∥∞
≤∥(πL[µ]∗(ℓ0) − µH) ∗ µ{1}∥2 ≤ |H|−2.

(50)

By (50) and its counterpart for πR[µ], for every x ∈ H we obtain that

|πL[µ∗(ℓ0)](x)− |H|−1| ≤ 2|H|−1 and

|πR[µ∗(ℓ0)](x)− |H|−1| ≤ 2|H|−1.
(51)

Suppose ℓ is a positive integer which is at least ℓ0 and will be specified
later. Let Y be a random variable with values in H × H and distribution
µ∗(ℓ).

As it has been mentioned earlier, by a result of Frobenius every non-trivial
representation of SL2(Fp) is of dimension at least (p − 1)/2. Hence there
is a positive number c2 such that SL2(Fp)× SL2(Fp) is an c2-quasi-random
group.

By Lemma 17, there is a positive number γ0 depending on c2 and a
universal positive constant R such that for every positive number γ ≤ γ0,
one of the following statements hold. Either |H|Rγ ≤ 2, or

(52) H2(Y ) > (1− c2/2) log |H ×H|,



22 ALIREZA SALEHI GOLSEFIDY AND SRIVATSA SRINIVAS

or there is an automorphism ϕ of PSL2(Fp) such that

(53) P(ι(Y2) ∈ Γϕ) ≥ |H ×H|−Rγ ,

where Γϕ is the graph of ϕ, or

(54) H2(Y2) ≥ H2(Y ) + γ log(|H ×H|).
Claim 1. There are positive numbers p0, γ1, and L′ all depending only
on c0 and α0 such that Equation (53) does not hold for any automorphism
ϕ, positive integer ℓ ≥ L′ log |H × H|, positive number γ = γ1, and prime
p ≥ p0.

Proof of Claim 1. Suppose to the contrary that (53) holds for an auto-
morophism ϕ of PSL2(Fp). Let X := (XL, XR) be a random variable with

values in SL2(Fp)×SL2(Fp) and distribution µ. LetX := (ι(XL), ϕ
−1(ι(XR))).

Then by Lemma 5, there exist constants L,C ≫c0,α0 1 such that for every
integer ℓ ≥ L log |H ×H| we have

(55) H2(Xℓ · Z) ≥ 1

12
log |PSL2(Fp)× PSL2(Fp)| − C

where Z is a random variable with values in PSL2(Fp) and distribution µ{1}.
Notice that

P(Xℓ · Z = 1) =P(ι((XL)ℓ) = ϕ−1(ι((XR)ℓ))) = P(ῑ(Xℓ) ∈ Γϕ)

≥|H ×H|−Rγ0 .
(56)

By (56), we conclude that

(57) H2(Xℓ · Z) ≤ Rγ0 log |H ×H|.
By (55) and (57), we reach to a contradiction if p ≫c0,α0 1. This completes
proof of Claim 1.

Claim 2. Suppose ℓ1 is an integer in the interval

[L′ log |H ×H|, 2L′ log |H ×H|].
Let X be a random variable with distribution µ. Then

H2(Xℓ) > (1− c2/2) log |H ×H|

for every integer ℓ ≥ 2γ
−1
1 ℓ1.

Proof of Claim 2. Let Y := Xℓ1 , and consider the sequence of Renyi
entropies {H2(Y2k)}k. By Claim 1, for every positive integer k, either

H2(Y2k) >(1− c2/2) log |H ×H| or

H2(Y2k+1) ≥H2(Y2k) + γ1 log(|H ×H|).

Hence H2(Y2k) > (1 − c2/2) log(|H ×H|) if k is an integer more than γ−1
1 .

This completes proof of Claim 2.
By Claim 2 and Lemma 7, we conclude that either p ≪c0,α0 1 or

L(µ) ≥ c2

2γ
−1
1 +1L′

≫α0,c0 1.

This completes proof of the main theorem. □
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6. Proof of Corollary 3

Proof of Corollary 3. We can and will assume that p ≥ 5. Suppose ρ1 and
ρ2 are two distinct points of Rep2(Fp)δ. Let

Ω := {(ρ1(a), ρ2(a))±1, (ρ1(b), ρ2(b))
±1}

Let H be the group generated by Ω. Notice that πL(H) = Im(ρ1) = SL2(Fp)
and πR(H) = Im(ρ2) = SL2(Fp). Therefore for every x ∈ SL2(Fp), there is

ϕ̃(x) ∈ SL2(Fp) such that (x, ϕ̃(x)) ∈ H. Notice that if (y, 1) ∈ H, then for
every x ∈ SL2(Fp),

(xyx−1, 1) = (x, ϕ̃(x))(y, 1)(x, ϕ̃(x))−1 ∈ H.

Therefore πL(H∩kerπR) is a normal subgroup of SL2(Fp), and so it is either
SL2(Fp) or central. Similarly πR(H ∩ kerπL) is either SL2(Fp) or central.
Altogether, we have that either H = SL2(Fp) × SL2(Fp) or ῑ(H) = Γϕ

where Γϕ is the graph of an automorphism ϕ of PSL2(Fp). Notice that

by [22, Theorem 3.2], there is an automorphism ϕ̂ of SL2(Fp) such that

ϕ({±x}) = {±ϕ̂(x)} for every x ∈ SL2(Fp).
Let µ be the probability counting measure on Ω. Since ρ1, ρ2 ∈ Rep2(Fp)δ,

L(πL[µ]) and L(πR[µ]) are at least δ. Hence if H = SL2(Fp)×SL2(Fp), then
by Theorem 1, λ(µ) ≤ λ0 for some positive number λ0 which is less than 1
and only depends on δ. Then for every positive integer ℓ, we have

µ
∗(ℓ)
{a±,b±}({w ∈ F2 |ρ1(w) = ρ2(w)})

≤| SL2(Fp)|−1 + |(µ∗(ℓ)
Ω − µH)({(x, x) | x ∈ SL2(Fp)})|

≤| SL2(Fp)|−1 + λℓ
0|SL2(Fp)|.

If ῑ(H) = Γϕ, then for every w ∈ F2 we have ι(ρ2(w)) = ϕ(ι(ρ1(w))). This

means that for every w ∈ F2 we have ρ2(w) = ±ϕ̂(ρ1(w)). Hence

µ
∗(ℓ)
{a±,b±}({w ∈ F2 |ρ1(w) = ρ2(w)})

≤µ
∗(ℓ)
Ω ({(x,±ϕ̂(x)) | ±ϕ̂(x) = x})

≤µ
∗(ℓ)
πL(Ω)({x ∈ SL2(Fp) | ϕ(x) = ±x})

≤|{x ∈ SL2(Fp) | ϕ(x) = ±x}|
| SL2(Fp)|

+ 2−δℓ| SL2(Fp)|.

Notice that since ρ1 ̸= ρ2, ϕ̂ is a non-trivial automorphism of SL2(Fp).
Therefore

{x ∈ SL2(Fp) | ϕ(x) = ±x}
is a proper subgroup of SL2(Fp). Hence we conclude that

µ
∗(ℓ)
{a±,b±}({w ∈ F2 | ρ1(w) = ρ2(w)}) ≤ p−1 + 2−δℓ|SL2(Fp)|.
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Suppose [ρ1] ̸= [ρ2]. In the above setting, if H = SL2(Fp) × SL2(Fp), then
by a similar argument as above we have

µ
∗(ℓ)
{a±1,b±1}({w ∈ F2 |tw([ρ1]) = tw([ρ2])})

≤µ
∗(ℓ)
Ω ({(x1, x2) | Tr(x1) = Tr(x2)})

≤|{(x1, x2) | Tr(x1) = Tr(x2)}|
| SL2(Fp)|2

+ λℓ
0| SL2(Fp)|.(58)

Notice that for a given a ∈ Fp, we have

|{x ∈ SL2(Fp) | Tr(x) = a}| =
|{(x11, x12, a− x11, x21) ∈ F4

p | x11(a− x11)− x12x21 = 1}|,
and for a given x12, x21 there are at most 2 choices for x11. Hence

(59) |{x ∈ SL2(Fp) | Tr(x) = a}| ≤ 2p2

for every a ∈ Fp. This implies that
(60)

|{(x1, x2) | Tr(x1) = Tr(x2)}| =
∑
a∈Fp

|{x ∈ SL2(Fp) | Tr(x) = a}|2 ≤ 4p5.

By (58) and (60), for p ≥ 5, we obtain

µ
∗(ℓ)
{a±,b±}({w ∈ F2 | ρ1(w) = ρ2(w)}) ≤

4

p
(1− p−2)−2 + λℓ

0|SL2(Fp)|

<
5

p
+ λℓ

0|SL2(Fp)|.

In the above setting, if ῑ(H) = Γϕ, then as we discussed above for some

automorphism ϕ̂ of SL2(Fp), we have ρ2(w) = ±ϕ̂(ρ1(w)). Hence by [22,
Theorem 3.2], Tr(ρ2(w)) = ±Tr(ρ1(w)) for every w ∈ F2. This completes
the proof. □
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mixing in finite groups. In Proceedings of the Nineteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 248–257. ACM, New
York, 2008.

[3] Jean Bourgain and Alex Gamburd. Uniform expansion bounds for Cay-
ley graphs of SL2(Fp). Ann. of Math. (2), 167(2):625–642, 2008.

[4] John B. Conway. A course in functional analysis, volume 96 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1985.

[5] Jozef Dodziuk. Difference equations, isoperimetric inequality and tran-
sience of certain random walks. Trans. Amer. Math. Soc., 284(2):787–
794, 1984.



RANDOM WALKS ON DIRECT PRODUCTS OF GROUPS 25

[6] Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex
Schwendner, Dmitry Vaintrob, and Elena Yudovina. Introduction to
representation theory, volume 59 of Student Mathematical Library.
American Mathematical Society, Providence, RI, 2011. With histor-
ical interludes by Slava Gerovitch.
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of Cours Spécialisés [Specialized Courses]. Société Mathématique de
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