PRACTICE EXAM FOR THE SECOND MIDTERM.

ALIREZA SALEHI GOLSEFIDY

The exam will be considered out 50 .

1. (5 points) Find all the maximal ideals of $\mathbb{Z} / 10 \mathbb{Z}$.
2.

(1) (5 points) Prove that $x^{2}+x+2$ is irreducible over $\mathbb{Z} / 5 \mathbb{Z}$.
(2) (5 points) Prove that $F=(\mathbb{Z} / 5 \mathbb{Z})[x] /\left\langle x^{2}+x+2\right\rangle$ is a field of order 25.
(3) (5 points) Find the multiplicative inverse of $2 x+3+\left\langle x^{2}+x+2\right\rangle$ in F.
3. (10 points) Is $(5 / 2) x^{5}+(9 / 2) x^{4}+15 x^{3}+(3 / 7) x^{2}+6 x+3 / 14$ irreducible over \mathbb{Q} ?
4. (10 points) Prove that for any integers m and n, the polynomial $x^{3}+(5 m+1) x+(5 n+1)$ is irreducible over \mathbb{Z}.
5. (20 points) Let F be a field and $f(x), g(x)$ be two non-zero polynomials in $F[x]$. Then there are $p(x), q(x) \in F[x]$ such that

$$
\operatorname{gcd}(f(x), g(x))=p(x) f(x)+q(x) g(x)
$$

Mathematics Dept, University of California, San Diego, CA 92093-0112
E-mail address: golsefidy@ucsd.edu

Date: 2/29/2012.

