MIDTERM I, MATH 103B, WINTER 2012.

ALIREZA SALEHI GOLSEFIDY

This exam will be considered out of 50 points. (An extra 20 (bonus) points is given.) Good luck!

1. (5 points each) Give either an example or a proof to support your claim.

- (1) There is an integral domain of characteristic 4.
- (2) There is an ideal I of $M_2(\mathbb{Z})$ such that $M_2(\mathbb{Z})/I$ is of order 125.
- (3) Let R be a unital ring and assume $1_R + 1_R + 1_R \in U(R)$. Then there is no ideal I such that $R/I \simeq \mathbb{Z}/\mathbb{Z}_3.$
- (4) There is a unital ring R and zero-divisors a and b such that a + b = 1.

2. Let
$$R = \left\{ \begin{bmatrix} a & b \\ 3b & a \end{bmatrix} \mid a, b \in \mathbb{Z} \right\}.$$

- (1) (10 points) Prove that R is a commutative subring of $M_2(\mathbb{Z})$. (2) (5 points) Let n be a positive integer and $I_n = \left\{ \begin{bmatrix} a & b \\ 3b & a \end{bmatrix} \mid a, b \in n\mathbb{Z} \right\}$. Prove that I_n is a principal ideal of R.
- (3) (5 points) Find the characteristic of R/I_n .
- (4) (10 points) Prove that R/I_n is isomorphic to $\left\{ \begin{bmatrix} a & b \\ 3b & a \end{bmatrix} \mid a, b \in \mathbb{Z}/n\mathbb{Z} \right\}$. In particular, $R/I_3 \simeq$ $\Big\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \mid a, b \in \mathbb{Z}/3\mathbb{Z} \Big\}.$
- (5) (5 points) Find the necessary and the sufficient condition for n such that R/I_n is a field.
- (6) (15 points) Let $3 \neq p$ be a prime such that R/I_p is not a field. Prove that $R/I_p \simeq \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$.

MATHEMATICS DEPT, UNIVERSITY OF CALIFORNIA, SAN DIEGO, CA 92093-0112

E-mail address: golsefidy@ucsd.edu

Date: 2/1/2012.