MIDTERM: MATH 109, FALL 2011.

TIME: 3 HOURS.

Please write and sign that you have honored the UCSD honor code for this exam.

- (1) Write the negation of the following propositions.
 - (a) (5 points) There is a unique $a \in A, P(a)$.
 - (b) (5 points) $(\forall n, P(n) \Rightarrow Q(n)) \lor (\forall n, P(n) \Rightarrow R(n)).$

(Just saying e.g. $\neg((\forall n, P(n) \Rightarrow Q(n)) \lor (\forall n, P(n) \Rightarrow R(n)))$ is not good enough!)

(2) (7 points) Find a propositional form (a valid combination of $(,), P, Q, R, \land, \lor$ and \neg) whose truth table is the following

- (3) (a) (5 points) Write in mathematical language what it means to say lim_{x→a} f(x) does not exist.
 - (b) (8 points) Prove that $\lim_{x\to\sqrt{2}} x^2 = 2$.
- (4) (25 points) State the division algorithm and prove it.

Date: 10/28/2011.

TIME: 3 HOURS.

(5) Let $f_0 = 0$, $f_1 = 1$ and, for integer n, $f_{n+1} = f_n + f_{n-1}$. Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.

(a) (5 points) Prove
$$A^n = \begin{bmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{bmatrix}$$

- (b) (5 points) Prove for any positive integers n, m we have $f_{n+m} = f_{m+1}f_n + f_m f_{n-1}$. (Hint: use $A^{m+n} = A^m A^n$.)
- (c) (10 points) Prove for any positive integers n, k we have $f_n | f_{nk}$.
- (6) (15 points) Let $a_0 = 2$ and, for any positive integer n, $a_{n+1} = \sqrt{4a_n 1}$. Prove that a_n is increasing, i.e. for any positive integer n, $a_n \leq a_{n+1}$. (Hint: first prove by induction on n that for any positive integer n we have $2 \leq a_n \leq 2 + \sqrt{3}$.)
- (7) For any two subsets A, B of X, let $A \triangle B = (A \cup B) \setminus (A \cap B)$. Let $\chi_A : X \to \{0, 1\}$ be the characteristic function of A, i.e.

$$\chi_A(x) = \begin{cases} 1 & x \in A, \\ 0 & x \notin A. \end{cases}$$

- (a) (5 points) Define recursively what $A_1 \triangle A_2 \triangle \ldots \triangle A_n$ means, where for any $1 \le i \le n, A_i \subseteq X$.
- (b) (10 points) Prove for any $x \in X$ we have $\chi_{A_1 \triangle ... \triangle A_n}(x) \sum_{i=1}^n \chi_{A_i}(x)$ is even.
- (8) (Bonus problem) Let $a, b, c, d \in \mathbb{R}$ such that $ad bc \neq 0$ and $f : \mathbb{R} \setminus \{-c/d\} \to \mathbb{R}$,

$$f(x) = \frac{ax+b}{cx+d}.$$

- (a) (5 points) Is f injective?
- (b) (5 points) What is the image of f?
- (c) (10 points) Is there an invertible function $\tilde{f} : \mathbb{R} \cup \{ \odot \} \to \mathbb{R} \cup \{ \odot \}$ such that the restriction of \tilde{f} to $\mathbb{R} \setminus \{ -c/d \}$ is equal to f? Prove your answer.