MIDTERM: MATH 109, FALL 2011.

TIME: 3 HOURS.

Please write and sign that you have honored the UCSD honor code for this exam.
(1) Write the negation of the following propositions.
(a) (5 points) There is a unique $a \in A, P(a)$.
(b) (5 points) $(\forall n, P(n) \Rightarrow Q(n)) \vee(\forall n, P(n) \Rightarrow R(n))$.
(Just saying e.g. $\neg((\forall n, P(n) \Rightarrow Q(n)) \vee(\forall n, P(n) \Rightarrow R(n)))$ is not good enough!)
(2) (7 points) Find a propositional form (a valid combination of (,), P, Q, R, \wedge, \vee and \neg) whose truth table is the following

P	Q	R	$*$
T	T	T	F
T	T	F	T
T	F	T	F
T	F	F	F
F	T	T	T
F	T	F	F
F	F	T	F
F	F	F	F

(3) (a) (5 points) Write in mathematical language what it means to say $\lim _{x \rightarrow a} f(x)$ does not exist.
(b) (8 points) Prove that $\lim _{x \rightarrow \sqrt{2}} x^{2}=2$.
(4) (25 points) State the division algorithm and prove it.
(5) Let $f_{0}=0, f_{1}=1$ and, for integer $n, f_{n+1}=f_{n}+f_{n-1}$. Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.
(a) (5 points) Prove $A^{n}=\left[\begin{array}{cc}f_{n+1} & f_{n} \\ f_{n} & f_{n-1}\end{array}\right]$.
(b) (5 points) Prove for any positive integers n, m we have $f_{n+m}=f_{m+1} f_{n}+f_{m} f_{n-1}$. (Hint: use $A^{m+n}=A^{m} A^{n}$.)
(c) (10 points) Prove for any positive integers n, k we have $f_{n} \mid f_{n k}$.
(6) (15 points) Let $a_{0}=2$ and, for any positive integer $n, a_{n+1}=\sqrt{4 a_{n}-1}$. Prove that a_{n} is increasing, i.e. for any positive integer $n, a_{n} \leq a_{n+1}$. (Hint: first prove by induction on n that for any positive integer n we have $2 \leq a_{n} \leq 2+\sqrt{3}$.)
(7) For any two subsets A, B of X, let $A \triangle B=(A \cup B) \backslash(A \cap B)$. Let $\chi_{A}: X \rightarrow\{0,1\}$ be the characteristic function of A, i.e.

$$
\chi_{A}(x)= \begin{cases}1 & x \in A \\ 0 & x \notin A .\end{cases}
$$

(a) (5 points) Define recursively what $A_{1} \triangle A_{2} \triangle \ldots \triangle A_{n}$ means, where for any $1 \leq$ $i \leq n, A_{i} \subseteq X$.
(b) (10 points) Prove for any $x \in X$ we have $\chi_{A_{1} \triangle \ldots \Delta A_{n}}(x)-\sum_{i=1}^{n} \chi_{A_{i}}(x)$ is even.
(8) (Bonus problem) Let $a, b, c, d \in \mathbb{R}$ such that $a d-b c \neq 0$ and $f: \mathbb{R} \backslash\{-c / d\} \rightarrow \mathbb{R}$,

$$
f(x)=\frac{a x+b}{c x+d}
$$

(a) (5 points) Is f injective?
(b) (5 points) What is the image of f ?
(c) (10 points) Is there an invertible function $\widetilde{f}: \mathbb{R} \cup\{\odot\} \rightarrow \mathbb{R} \cup\{\odot\}$ such that the restriction of \tilde{f} to $\mathbb{R} \backslash\{-c / d\}$ is equal to f ? Prove your answer.

