Math 109 Midterm 1 Review

Prepared by Janine LoBue and A.S. Golsefidy

1 Propositional forms and truth-table.

1. Which one of the following propositional forms is NOT equivalent to $P \Rightarrow Q$? Justify your answer.
(a) $(P \wedge(\neg Q)) \Rightarrow O$.
(b) $(\neg Q) \Rightarrow(\neg P)$.
(c) $\neg(P \wedge Q)$.
(d) $(\neg P) \vee Q$.
2. Show, without using truth tables, that the propositional form $(P \wedge Q) \vee(P \wedge \neg Q)$ is equivalent to P.
3. Find a propositional form whose truth table is the following.

P	Q	R	S	
T	T	T	T	F
T	T	T	F	F
T	T	F	T	T
T	T	F	F	T
T	F	T	T	F
T	F	T	F	F
T	F	F	T	F
T	F	F	F	F
F	T	T	T	F
F	T	T	F	T
F	T	F	T	F
F	T	F	F	F
F	F	T	T	F
F	F	T	F	F
F	F	F	T	T
F	F	F	F	F

2 Direct proof, case-by-case proof and proof by contradiction.

1. Prove that for all integers $n, 4\left(n^{2}+n+1\right)-3 n^{2}$ is a perfect square.
2. Show that if a product of two positive real numbers is greater than 100 , then at least one of the numbers is greater than 10.
3. Recall that a rotation matrix is a matrix of the form $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$ for some angle θ. Prove that $\left[\begin{array}{cc}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$ is not a rotation matrix. (You may use trig identities without proof.)
4. Prove that if $d \mid l_{1}$ and $d \mid l_{2}$, then $d \mid s_{1} l_{1}+s_{2} l_{2}$ for any integers s_{1}, s_{2}.
5. Let k be a positive integer. Prove that $2 k-1$ and $2 k+1$ have no common divisor larger than 1 .
6. Prove that if n^{2} is even, then n is even. (Hint: An even number is one that can be written in the form $2 k$ for some integer k.)
7. For a real number x, let $\lfloor x\rfloor$ be the integer part of x, i.e. it is the largest integer less than or equal to x.
(a) Prove that $\lfloor-x\rfloor=-\lfloor x\rfloor$ if and only if x is an integer. (You may use the fact that for a real number x and an integer n we have $\lfloor x\rfloor=n$ if and only if $n \leq x<n+1$.)
(b) Prove that $\lfloor x+m\rfloor=\lfloor x\rfloor+m$ for any real number x and any integer m.
(c) Prove that $\lfloor 3 x\rfloor=\lfloor x\rfloor+\left\lfloor x+\frac{1}{3}\right\rfloor+\left\lfloor x+\frac{2}{3}\right\rfloor$ for any real number x. (Hint: let $y=x-\lfloor x\rfloor$ and consider three cases separately (i) $0 \leq y<1 / 3$, (ii) $1 / 3 \leq y<2 / 3$, and (iii) $2 / 3 \leq y<1$.)

3 Constructing a proof backwards and inequalities.

1. Prove that for any positive real numbers x and y we have

$$
\sqrt{x y} \leq \frac{x+y}{2}
$$

2. Let a, b, c and d be real numbers such that $a>b$ and $c>d$. Prove that

$$
a c+b d>a d+b c
$$

3. Let x and y be positive integers. Prove that

$$
\frac{x+y}{2} \leq \sqrt{\frac{x^{2}+y^{2}}{2}}
$$

4. Let a, b and c be three real numbers. Prove that

$$
a b+a c+b c \leq a^{2}+b^{2}+c^{2}
$$

4 Proof by induction.

1. Give a recursive definition for each sequence:
a) $1,4,7,10,13,16, \ldots$
b) $-1,1,-1,1,-1,1, \ldots$
c) $1,4,9,16,25,36, \ldots$
d) $1,4,8,13,19,26, \ldots$
e) $8,16,32,64,128,256, \ldots$
2. Show that $n^{3}-n$ is divisible by 3 for every positive integer n.
3. Prove that for any positive integer n,
a) $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$
b) $\sum_{i=0}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
c) $\sum_{i=0}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$
4. If the Fibonacci numbers are defined by $f_{0}=0, f_{1}=1$, and $f_{n+1}=f_{n}+f_{n-1}$, prove that for all $n \geq 0$, $\sum_{i=0}^{n} f_{i}^{2}=f_{n} f_{n+1}$.
5. Let $a_{1}=1$ and $a_{n+1}=\frac{3 a_{n}+1}{2 a_{n}+1}$ for any positive integer n. Prove that
(a) For any positive integer n, we have that $a_{n}<a_{n+1}$.
(b) For any positive integer n, we have that $a_{n}<\frac{1+\sqrt{3}}{2}$.
6. Let $a_{1}=1$ and $a_{n+1}=\sqrt{1+a_{n}}$ for any positive integer n. Prove that
(a) For any positive integer n, we have that $a_{n}<a_{n+1}$.
(b) For any positive integer n, we have that $a_{n}<\frac{1+\sqrt{5}}{2}$.
7. Let $u_{0}=0, u_{1}=1$ and $u_{n+1}=2 u_{n}+2 u_{n-1}$. Let $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 2\end{array}\right]$. Prove that
(a) For any positive integer n we have

$$
A^{n}=\left[\begin{array}{cc}
2 u_{n-1} & u_{n} \\
2 u_{n} & u_{n+1}
\end{array}\right]
$$

(b) For any positive integers m and n, we have that

$$
u_{m+n}=2 u_{n-1} u_{m}+u_{n} u_{m+1}
$$

(Hint: $A^{m+n}=A^{m} A^{n}$.)
(c) Use part (b) and induction to prove that $u_{m} \mid u_{m k}$ for any positive integers m and k.

