Math 109 Midterm 1 Review Prepared by Janine LoBue and A.S. Golsefidy

1 Propositional forms and truth-table.

- 1. Which one of the following propositional forms is NOT equivalent to $P \Rightarrow Q$? Justify your answer.
 - (a) $(P \land (\neg Q)) \Rightarrow O$.
 - (b) $(\neg Q) \Rightarrow (\neg P).$
 - (c) $\neg (P \land Q)$.
 - (d) $(\neg P) \lor Q$.
- 2. Show, without using truth tables, that the propositional form $(P \land Q) \lor (P \land \neg Q)$ is equivalent to P.
- 3. Find a propositional form whose truth table is the following.

Р	\mathbf{Q}	R	\mathbf{S}	
Т	Т	Т	Т	F
Т	Т	Т	F	F
Т	Т	F	Т	Т
Т	Т	F	F	Т
Т	F	Т	Т	F
Т	F	Т	F	F
Т	F	F	Т	F
Т	F	F	F	F
F	Т	Т	Т	F
F	Т	Т	F	Т
F	Т	F	Т	F
F	Т	F	F	F
F	F	Т	Т	F
F	F	Т	F	F
F	F	F	Т	Т
F	F	F	F	F

2 Direct proof, case-by-case proof and proof by contradiction.

- 1. Prove that for all integers n, $4(n^2 + n + 1) 3n^2$ is a perfect square.
- 2. Show that if a product of two positive real numbers is greater than 100, then at least one of the numbers is greater than 10.
- 3. Recall that a rotation matrix is a matrix of the form $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$ for some angle θ . Prove that $\begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$ is not a rotation matrix. (You may use trig identities without proof.)
- 4. Prove that if $d|l_1$ and $d|l_2$, then $d|s_1l_1 + s_2l_2$ for any integers s_1, s_2 .

- 5. Let k be a positive integer. Prove that 2k 1 and 2k + 1 have no common divisor larger than 1.
- 6. Prove that if n^2 is even, then n is even. (Hint: An even number is one that can be written in the form 2k for some integer k.)
- 7. For a real number x, let $\lfloor x \rfloor$ be the integer part of x, i.e. it is the largest integer less than or equal to x.
 - (a) Prove that $\lfloor -x \rfloor = -\lfloor x \rfloor$ if and only if x is an integer. (You may use the fact that for a real number x and an integer n we have $\lfloor x \rfloor = n$ if and only if $n \le x < n + 1$.)
 - (b) Prove that |x + m| = |x| + m for any real number x and any integer m.
 - (c) Prove that $\lfloor 3x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor$ for any real number x. (Hint: let $y = x \lfloor x \rfloor$ and consider three cases separately (i) $0 \le y < 1/3$, (ii) $1/3 \le y < 2/3$, and (iii) $2/3 \le y < 1$.)

3 Constructing a proof backwards and inequalities.

1. Prove that for any positive real numbers x and y we have

$$\sqrt{xy} \le \frac{x+y}{2}$$

2. Let a, b, c and d be real numbers such that a > b and c > d. Prove that

$$ac + bd > ad + bc$$

3. Let x and y be positive integers. Prove that

$$\frac{x+y}{2} \le \sqrt{\frac{x^2+y^2}{2}}.$$

4. Let a, b and c be three real numbers. Prove that

$$ab + ac + bc \le a^2 + b^2 + c^2.$$

4 **Proof by induction.**

- 1. Give a recursive definition for each sequence:
 - a) 1, 4, 7, 10, 13, 16, ...
 - b) -1, 1, -1, 1, -1, 1, ...
 - c) 1, 4, 9, 16, 25, 36, \dots
 - d) 1, 4, 8, 13, 19, 26, \dots
 - e) 8, 16, 32, 64, 128, 256, ...
- 2. Show that $n^3 n$ is divisible by 3 for every positive integer n.
- 3. Prove that for any positive integer n,

a)
$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

b)
$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

c) $\sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4}$

- 4. If the Fibonacci numbers are defined by $f_0 = 0$, $f_1 = 1$, and $f_{n+1} = f_n + f_{n-1}$, prove that for all $n \ge 0$, $\sum_{i=0}^n f_i^2 = f_n f_{n+1}.$
- 5. Let $a_1 = 1$ and $a_{n+1} = \frac{3a_n+1}{2a_n+1}$ for any positive integer n. Prove that
 - (a) For any positive integer n, we have that $a_n < a_{n+1}$.
 - (b) For any positive integer n, we have that $a_n < \frac{1+\sqrt{3}}{2}$.
- 6. Let $a_1 = 1$ and $a_{n+1} = \sqrt{1 + a_n}$ for any positive integer n. Prove that
 - (a) For any positive integer n, we have that $a_n < a_{n+1}$.
 - (b) For any positive integer n, we have that $a_n < \frac{1+\sqrt{5}}{2}$.
- 7. Let $u_0 = 0$, $u_1 = 1$ and $u_{n+1} = 2u_n + 2u_{n-1}$. Let $A = \begin{bmatrix} 0 & 1 \\ 2 & 2 \end{bmatrix}$. Prove that
 - (a) For any positive integer n we have

$$A^n = \left[\begin{array}{cc} 2u_{n-1} & u_n \\ 2u_n & u_{n+1} \end{array} \right].$$

(b) For any positive integers m and n, we have that

$$u_{m+n} = 2u_{n-1}u_m + u_n u_{m+1}.$$

(Hint: $A^{m+n} = A^m A^n$.)

(c) Use part (b) and induction to prove that $u_m|u_{mk}$ for any positive integers m and k.