MATH 109: THE SECOND EXAM. INSTRUCTOR: A. SALEHI GOLSEFIDY

NAME: Solutions	
PID:	

- (1) Write your Name and PID on the front of your exam sheet.
- (2) No calculators or other electronic devices are allowed during this exam.
- (3) Show all of your work; no credit will be given for unsupported answers.
- (4) Read each question carefully to avoid spending your time on something that you are not supposed to (re)prove.
- (5) Ask me when you are unsure if you are allowed to use certain fact or not.
- (6) You can choose between problem 3 and problem 4.
- (7) There is a bonus problem which is related to problem 4. You do not have to do problem 4 in order to work on the bonus problem.
- (8) The bonus problem has 5 extra points.

Problem	Score out of 10
1	
2	
3	
4	
Bonus	

$Total = S1 + S2 + max(S3, S4) + (0.5) \times Bonus$	

Date: 05/20/2013.

PID:

(1) Let A, B and C be three sets. Prove that

(a) $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

(b) $A \setminus B = \emptyset \Rightarrow A \subseteq B$.

(A) $(x,y) \in A \times (B \cup C) \iff x \in A \land y \in (B \cup C)$ $\iff x \in A \land (y \in B \lor y \in C)$ $\iff (x \in A \land y \in B) \lor (x \in A \land y \in C)$ $\iff (x,y) \in A \times B \lor (x,y) \in A \times C$ $\iff (x,y) \in (A \times B) \cup (A \times C).$

(b) Suppose to the contrary $A \nsubseteq B \Rightarrow$ $\neg (x \in A \Rightarrow x \in B) \Rightarrow \exists x, x \in A \land x \notin B$ $\Rightarrow \exists x, x \in A \setminus B$ $\Rightarrow A \setminus B \neq \emptyset \text{ which is a contradiction.}$

(2) (a) Prove or disprove that $\forall a, b \in \mathbb{R}, ((\forall \varepsilon \in \mathbb{R}^+, a < b + \varepsilon) \Rightarrow a \leq b)$.

(b) Prove or disprove that $\exists a \in \mathbb{R}, \forall b \in \mathbb{R}, 2 - b^2 \leq a$.

(a) Suppose to the contrary:

 $\neg (\forall a,b \in \mathbb{R}, ((\forall \epsilon \in \mathbb{R}^+, a < b + \epsilon) \Rightarrow a \leq b)$

 $\equiv \exists a, b \in \mathbb{R}, (\forall \epsilon \in \mathbb{R}^+, a < b + \epsilon) \land a > b \cdot (\exists)$

Let c= a-b So by (I) we have

 $(\underbrace{\forall \varepsilon \mathbb{R}^{+}, c < \varepsilon}) \land \circ < c$

However $0 < c \Rightarrow 0 < \frac{c}{2} < c$; and this means

E= 5/2 does not satisfy (II), which is a contradiction.

(b) True. Claim a=2 satisfies (III), i.e.

 $\forall b \in \mathbb{R}, 2-b^2 \leq 2$

Pfof the claim. $\forall b \in \mathbb{R}$, $b^2 \ge 0 \implies 0 \ge -b^2 \implies 2 \ge 2-b^2$.

(3) Let $a_0 = 0$, $a_1 = 1$ and $a_{n+1} = 5a_n - 6a_{n-1}$ for any positive integer n. Prove that $a_n = 3^n - 2^n$ for any non-negative integer n.

Proceed by strong induction.

Bose .
$$\alpha_0 = 0 = 3^0 - 2^0 \sqrt{3}$$

The strong induction step.

$$\frac{e \text{ strong induction } 2 - \frac{1}{2}}{\forall 0 \le k \le n , \alpha_k = 3^k - 2^k} \stackrel{?}{\Rightarrow} \alpha_{n+1} = 3^k - 2^k$$

Pf of the strong induction step. For n=1, clearly equality holds. If n>1,

$$a_{n+1} = 5 a_n - 6 a_{n-1}$$

$$= 5 (3^n - 2^n) - 6 (3^n - 2^{n-1}) \qquad \text{(by the strong induction)}$$

$$= (5 \times 3^n - 6 \times 3^{n-1}) - (5 \times 2^n - 6 \times 2^{n-1}) \text{ hypothesis)}$$

$$= 3^{n-1} (15 - 6) - 2^{n-1} (10 - 6)$$

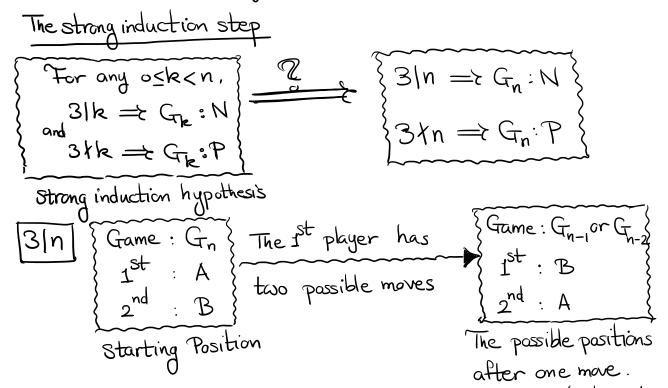
$$= 3^{n-1} \times 9 - 2^{n-1} \times 4$$

$$= 3^{n+1} - 2^{n+1}$$

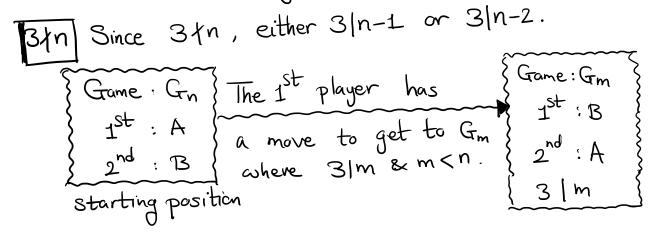
(4) Let n be a non-negative integer. In the game G_n , there is a heap of n stones and each player at her turn removes either *one* or two stones. A player wins if she removes the last stone. Assume that both of the players make the best possible moves. Prove that the first player wins if and only if $3 \nmid n$, i.e. n is not a multiple of 3. (Hint: use strong induction on n.)

We proceed by strong induction on n.

<u>Base</u>. n=0 \Longrightarrow clearly the first player has no win \Longrightarrow G_0 is an N-game.



Since $3\ln$, $3\ln$ -1 and $3\ln$ -2. Hence by strong induction hypothe. G_{n-1} and G_{n-2} are P-games. Thus the first player, who is B, can win. So G_n is an N-game.



By the strong induction hypothesis, Gm is an N-game, So the 2nd player, who is A, can win. Hence Gn is a P-game.

(5) (Bonus) Let G_n be the game introduced in Problem 4. Find necessary and sufficient condition for $(n,m) \in \mathbb{Z}^{\geq 0} \times \mathbb{Z}^{\geq 0}$ such that the first player wins $G_n \oplus G_m$. (Assume that both of the players make the best possible moves.)

Gn⊕Gm is a P-game 3/n-m.

We prove it by strong induction on m+n.

The key idea is similar to Problem 4.

• $G_n \oplus G_m$ changes to $G_{n'} \oplus G_{m'} \in \mathcal{E}_{G_{n-1}} \oplus G_m, G_{n-2} \oplus G_m, G_n \oplus G_{m-1}, G_n \oplus G_{m-2} \mathcal{E}$.

if 3/n-m, then 3/n-m.

• If 3/n-m, then there is a move to change the game to $G_{n}/\Phi G_{m}/s$.t. 3/n'-m'.

You can complete the proof on your own.