Midterm MAT 214: Theorems and Problem Sets.

Instructor: Alireza Salehi Golsefidy

March 17, 2010

1-(15 points) Let a and b be two non-zero integers. Show that there are integers r and s such that g.c.d. $(a, b)=a r+b s$.

2-(15 points) State a version of Wolstenholme's theorem and prove it.
3-(20 points) Define primitive root and show that there is a primitive root modulo a prime number.

4- Let $f(n)=\sum_{m \leq n,(m, n)=1} m$. Show that
a) (5 points) $f(n)=n \phi(n) / 2$.
b) (10 points) If $f(n)=f(m)$, then $n=m$.

5-(5 points) Find all positive integers n such that, for any k, the binomial coefficient $\binom{n}{k}$ is odd.
$6-(5$ points $)$ Show that g.c.d. $\left(2^{2^{n}}+1,2^{2^{m}}+1\right)=1$.

7-a) (10 points) Let p be a prime number and k a positive integer. Show that

$$
\sum_{i=0}^{p-1} i^{k} \equiv \begin{cases}0 \quad(\bmod p) & \text { if } p-1 \nmid k \\ -1 \quad(\bmod p) & \text { if } p-1 \mid k\end{cases}
$$

b) (15 points) Let $f \in(\mathbb{Z} / p \mathbb{Z})\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial in n variables with coefficients in $\mathbb{Z} / p \mathbb{Z}$. Show that if degree of f is less than n, then p divides $\# V_{f}(\mathbb{Z} / p \mathbb{Z})$, where

$$
V_{f}(\mathbb{Z} / p \mathbb{Z})=\left\{\mathbf{a} \in(\mathbb{Z} / p \mathbb{Z})^{n} \mid f(\mathbf{a}) \equiv 0 \quad(\bmod p)\right\}
$$

