Midterm MAT 214: New Problems.

Instructor: Alireza Salehi Golsefidy

March 17, 2010

1- (5 points) How many primes, written in base 10, are alternating 1's and 0's beginning and ending with 1?

2- (5 points) Find all positive integers coprime to all terms of $2^n + 3^n + 6^n - 1$. (Hint: $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1!$)

3- (5 points) Let n > 6 be an integer and $a_1 < a_2 < \cdots < a_{\phi(n)}$ be all the natural numbers less n which are coprime to n. If $a_1, \ldots, a_{\phi(n)}$ is an arithmetic progression, then n is either prime or a power of 2.

4- Let $\{a_n\}_{n=1}^{\infty}$ be the Fibonacci sequence, i.e. $a_0 = 0, a_1 = 1$, and

$$a_{n+1} = a_n + a_{n-1}.$$

- a) (5 points) Show that g.c.d. $(a_{m+1}, a_m) = 1$ for any positive integer m.
- b) (10 points) Show that for any positive integer m and non-negative integers q and r, we have

$$a_{mq+r} \equiv a_{m+1}^q a_r \pmod{a_m},$$

and conclude that $\{a_n \pmod{a_m}\}_{n=1}^{\infty}$ is a periodic sequence with shortest period equal to $m \cdot \operatorname{Ord}_{a_m}(a_{m+1})$.

c) (5 points) Show that for any pair of positive integers m and n, we have

$$g.c.d.(a_m, a_n) = a_d,$$

where d = g.c.d.(m, n).

- 5-a) (10 points) Show that g.c.d. $(b^m-1, b^n-1) = b^d-1$, where d = g.c.d.(m, n), for any positive integers b > 1, m and n.
 - b) (15 points) Let b > 1, $m \neq n$ be positive integers. If $b^n 1$ and $b^m 1$ have the same prime divisors, then b + 1 is a power of 2.