Midterm MAT 214: Theorems and Problem Sets.

Instructor: Alireza Salehi Golsefidy
$3 \frac{1}{2}$-hour exam

May 9, 2010

1-(20 points) Show that a real number has a periodic simple continued fraction if and only if it is an irrational quadratic number.

2-(15 points) State and prove lemma of Gauss for proving quadratic reciprocity.
3-(15 points) Show that any prime number of the form $3 k+1$ can be written as $x^{2}+x y+y^{2}$ for some integers x and y.

4-(5 points) Given $\sqrt{18}=\langle 4, \overline{4,8}\rangle$, find the least positive solution of $x^{2}-18 y^{2}=$ -1 if any and of $x^{2}-18 y^{2}=1$.

5 -(5 points) Show that, for all positive integers $m, \sum_{m \mid n} d(m)^{3}=\left(\sum_{m \mid n} d(m)\right)^{2}$, where $d(m)$ is the number of positive divisors of m.

