Midterm MAT 214: Theorems and Problem Sets.

Instructor: Alireza Salehi Golsefidy
8-hour exam

May 9, 2010

1-(10 points) Let p be an odd prime and

$$
f(x)=\sum_{i=0}^{p-2}(i+1) x^{i}
$$

Show that if $f(a) \equiv f(b)(\bmod p)$, then $a \equiv b(\bmod p)$.
2-(10 points) Let $a_{1}=1, a_{2}=2, a_{3}=24$, and for $n \geq 4$,

$$
a_{n}=\frac{6 a_{n-1}^{2} a_{n-3}-8 a_{n-1} a_{n-2}^{2}}{a_{n-2} a_{n-3}}
$$

Show that $n \mid a_{n}$ for all positive integers n.
3-(5 points) Let x and y be two positive integers. Show that if $x y \mid x^{2}+y^{2}+1$, then $x^{2}+y^{2}+1=3 x y$.

4- Let \mathcal{O}_{m} be the ring of integers in $\mathbb{Q}[\sqrt{m}]$.
a) (5 points) If $x, y \in \mathbb{Z}$ and x divides y in \mathcal{O}_{m}, then x divides y in \mathbb{Z}.
b) (15 points) Let a and b be two non-zero integers such that $a^{2}+4 b \neq 0$ and g.c.d. $(a, b)=1$. Let $\left\{x_{m}\right\}_{m=0}^{\infty}$ be a sequence of integers as follows:

$$
x_{0}=0, x_{1}=1, \quad x_{m+1}=a x_{m}+b x_{m-1}
$$

Show that g.c.d. $\left(x_{m}, x_{n}\right)=x_{\text {g.c.d. }(m, n)}$ for all positive integers m and n. (Hint: First show that $x_{m}=\frac{\alpha^{m}-\beta^{m}}{\alpha-\beta}$, where α and β are solutions of $x^{2}-a x-b=0$.)

5-(15 points) Find all positive integers n such that $n=x^{2}+x y+y^{2}$ for some integers x and y. If p is prime and $p=x^{2}+x y+y^{2}$, then at most how many integer solutions does the equation $p=x^{2}+x y+y^{2}$ have? (Hint: use $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$.)

