More on group actions and quotients

Wednesday, May 24, 2017 10:15 PM

Lemma. Suppose
$$V \subseteq kIGJ$$
 is a finite-dimensional subspace,
and, $\forall f \in V$, $g \in G$, $\lambda(g)(f) \in V$. Let
 $\pi: G \rightarrow GL(V)$, $\pi(g)(v) := \lambda(g)(v)$.
Then $\bigcirc \pi$ is an algebraic group homomorphism.
 $\textcircled{O}(d\pi|_{e}(\delta))(v) = -\delta * v$ for any $\delta \in Der(kIGL h_{e})$
we are identifying
 $Der(kIGL(N), k_{I})$
and $End(V)$.

PP. \textcircled{O} are have already proved: let $\xi f_{1}, ..., f_{n}\xi$ be a basis of V ,
and extend it to a basis $\xi f_{n}\xi$ of $kIGJ$. Suppose
 $m^{*}(f_{i}) = \sum_{j} \alpha_{ij} \otimes f_{j}$ for some $\alpha_{ij} \in kIGJ$. Then
 $\lambda(g)(f_{i})(g') = \sum_{j} \alpha_{ij}(q^{-1}) f_{j}(g') \Rightarrow \lambda(g)(f_{i}) = \sum_{j} t^{*}(\alpha_{ij})(g) f_{j}$
 $\Rightarrow [\pi(g)]_{g_{1}} = [t^{*}(\alpha_{ij})(g)] \in M_{n}(k),$
 $and t^{*}(\alpha_{ij}) \in kIGJ$.

(a)
$$\delta * f_i = \frac{5}{3!} \delta(a_{ij}) f_j$$
.
. To understand, $(d\tau \mid (S))(f_i)$, are identify V orth
 k^n and $k[V] = k[\underline{\alpha}_1, ..., \underline{\alpha}_n]$; we have
 $k[V] \rightarrow k[GL(V)] \otimes k[V] \rightarrow k[G] \otimes k[V] \rightarrow k_1 \otimes k[V] \xrightarrow{\sim} k[V]$
 $\underline{\alpha}_i (d\tau \mid (S)(f_i)) = ?$
 $\underline{\alpha}_i (d\tau \mid (S)(f_i)) = \delta(r^*(\alpha_{ij})) , ashich implies$
 $d\tau \mid_{e}(S)(f_i) = \sum_{j=1}^{n} \delta(r^*(\alpha_{ij})) f_j = -\sum_{j=1}^{n} \delta(a_{ij}) f_j^2$.
 $= -\delta * f_i$.
 $\underline{\beta} + \delta \in D_{e_i}(k[G], k_e), \quad \delta \circ t^* = -\delta$.
 $\underline{\beta} + \delta \in D_{e_i}(k[G], k_e), \quad \delta \circ t^* = -\delta$.
 $\underline{\beta} + \delta \in D_{e_i}(k[G], k_e), \quad \delta \circ t^* = -\delta$.
 $\underline{\beta} + \delta \in D_{e_i}(k[G], k_e), \quad \delta \circ t^* = -\delta$.
 $\underline{\beta} + \delta \in D_{e_i}(k[G], k_e), \quad \delta \circ t^* = -\delta$.
 $\underline{\beta} + \delta \in D_{e_i}(k[G], k_e), \quad \delta \circ t^* = -\delta$.
 $\underline{\beta} + \delta \in D_{e_i}(k[G], k_e), \quad \delta \circ t^* = -\delta$.
 $\underline{\beta} = \frac{2}{5} \delta \in S \mid \delta(I_{\mu}) = \circ \frac{2}{5}$
 $= \frac{2}{5} \delta \in S \mid \delta(I_{\mu}) = \circ \frac{2}{5}$

$$= \pm \varepsilon \propto_{1/2} \cdot \varepsilon = \varepsilon \times_{1/2} \cdot = \varepsilon \times_$$

. If the above equality holds, then
$$\forall g \in G = G(k)$$

 $\pi(g)(l) = l \Rightarrow \pi(g) (l \& k \text{ IET}) = l \& k$
 $\Rightarrow g \in H(k \text{ IEJ}) \cap G(k) = H(k).$
 $\forall x \in G, d \pi(g \in X)(l) \in l \Rightarrow \pi(I + ex)(l \& k \text{ IEJ}) = l \& k \text{ IEJ}$
 $\Rightarrow I + ex \in H(k \text{ IEJ}) \Rightarrow x \in G \cdot I$
(We need the following theorems from AG::
Theorem 1. X,Y: irreducible varieties;
 $\phi: X \rightarrow Y$ dominant; $r := \dim X - \dim Y.$
 $\Rightarrow \exists \not \neq U \subseteq X$ open st.
 $(I) \ \Rightarrow |_U$ is an open morphism.
 $(I) \ \Rightarrow |_U$ is $r.$
 $(I) \ \Rightarrow f(k(Y); \#(k(X))] < \infty$, then, $\forall x \in X$,
 $| \Rightarrow^{I} (\psi(x)) = [k(Y); \#(k(X))]$ sep.
Theorem 2. X,Y: irredu.
 $\ \Rightarrow : X \rightarrow Y$ bijective
 $\ \Rightarrow : k(Y) \ \longrightarrow k(X)$
Y: normal, i.e. $(Q_{r,Y} \in k(Y))$ is integrally closed.

Y: normal, i.e.
$$Q_{Y,Y} \leq k(Y)$$
 is integrally closed.
 $\Rightarrow \Rightarrow ls an isomorphism$
Corbilary. Let $\Rightarrow: G_1 \rightarrow G_2$ be an algebraic group homomorphism.
Suppose \Rightarrow is an abstract group isomorphism, and G_3 's are connected.
Then \Rightarrow is an isomorphism of algebraic groups $\Leftrightarrow \Rightarrow$ is separable.
 $\Leftrightarrow d \Rightarrow [_e$ is surjective.
Pf. We have already proved that \Rightarrow is separable $\Leftrightarrow \Rightarrow d \Rightarrow [_e$ is surjective.
Pf. We have already proved that \Rightarrow is separable $\Leftrightarrow \Rightarrow d \Rightarrow [_e$ is surjective.
Pf. We have already proved that \Rightarrow is separable $\Leftrightarrow \Rightarrow d \Rightarrow [_e$ is surjective.
Pf. We have already proved that \Rightarrow is separable $\Leftrightarrow \Rightarrow d \Rightarrow [_e$ is surjective.
Pf. We have already proved that \Rightarrow is separable $\Leftrightarrow \Rightarrow d \Rightarrow [_e$ is surjective.
Pf. We have already \Rightarrow $k(G_2)/\phi^* k(G_1)$ is separably generated.
On the other hand, $\forall g \in G_1$, $| \Rightarrow^{\pm} k(G_1) | = 1 \Rightarrow$
dim $G_1 = \dim G_2 \Rightarrow [k(G_2): \Rightarrow^* k(G_1)] < \infty ? \Rightarrow [k(G_2): \Rightarrow^* k(G_2)] = 1 \cdot$
 $| \Rightarrow^{\pm} ((\varphi_{(21)})| = 1]$
 $\bigcirc (f) \Rightarrow + k(G_2) = \phi^* k(G_1)$
 $G_2: smooth \Rightarrow G_2: normal f (of varieties.) \cdot \bullet$
Carollary. X, Y: irreducible G-homogen spaces
 $\Rightarrow : X \rightarrow Y : G$ -equivar: morphism
 $\Rightarrow : bijestion \cdot$
TFAE: $\bigcirc d \Rightarrow [_x$ is surjective for some x_0 .
 $@ \Rightarrow is separable.
 $@ \Rightarrow$ is an isomorphism.$

(The same proof as above.)
There are proof as above.)
Then
$$\exists a$$
 quasi-projective G -homogen. space X and x_e
st $\textcircled{1}$ $\{g \in G \mid g \cdot x_o = x_o \} = H$.
 $\textcircled{2}$ $\P^r: G \rightarrow X^\circ$, $\P^r(g) := g \cdot x_o$ is a separable morphism
 Pf . We have already proved $\textcircled{1}$:
Let $\pi: G \rightarrow GL(Y)$ be an algebraic group homomorphism
and $l \in V$ be a line as in the operators theorem.
Let $\chi := \pi i G \cap I \subseteq P(V)$. Then $\exists O \subseteq \chi$ which is open
in the obsure $X \subseteq P(V)$ of χ . Since χ is G -homogen.,
 χ is open in $\overline{\chi}$. And so it is quasi-projective G -homog.
space. Let $\chi:=l$, and so the way (π, l) are chosen
implies part 1.
To show 24 is separable, we will show $degl_e$ is surjective.
 χ is open in $\overline{\chi} \Rightarrow T_{\chi}X = T_{\chi}, \overline{\chi}$
 $\overline{\chi}$ is closed in $P(Y) \Rightarrow T_{\chi} \overline{\chi} \subset \int_{LS} (P(Y))$.
So we need to study $T_{\xi}(P(Y))$. For this, we need an open

affine neighborhood U of 2 in P(V).
Let
$$v_{\underline{i}} \in V$$
 be st: $l = k v_{\underline{i}}$; and let's extend it to a basis
 $v_{\underline{i}}, ..., v_{\underline{n}}^{*}$ of V. Suppose $v_{\underline{i}}^{*}, ..., v_{\underline{n}}^{*}$ is the dual basis.
Let $U := \overline{v} [X] \in P(V) | v_{\underline{i}}^{*}(x) \neq o \overline{v}$. Then
 $U \rightarrow k^{\underline{n}-\underline{i}}$, $[X] \mapsto (v_{\underline{i}}^{\underline{i}}(x_{0}), ..., v_{\underline{i}}^{\underline{i}}(x_{0}))$ is an isomorphism.
And so U is an open affine nobed of l , and $T_{\underline{i}} (P(V))$ can
be identified with $k^{\underline{n}-\underline{i}}$ as above. So, if $p: V \setminus \overline{v}o \overline{v} \rightarrow P(V)$,
then $T_{\underline{v}} (V \setminus \overline{v}o \overline{v}) \longrightarrow T_{\underline{i}} v_{\underline{i}} \rightarrow v_{\underline$

$$dqs_{l_{e}}$$

$$x \mapsto dx_{l_{e}}(x) \mapsto dx_{l_{e}}(x)(v_{1}) \mapsto dp_{l_{e_{1}}}(dx_{l_{e}}(x)(v_{1})).$$
Hence $x \in \ker (dqs_{l_{e}}) \rightleftharpoons dx_{l_{e}}(x)(v_{1}) \in \ker dp_{l_{e_{1}}} = l$

$$\Leftrightarrow dx_{l_{e}}(x)(l) \leq l.$$

$$\Rightarrow x \in J.$$
Thus din $\ln (dqs_{l_{e}}) = \dim g - \dim \ker (dqs_{l_{e}})$

$$= \dim g - \dim f = \dim G - \dim H. \quad \text{(I)}$$

$$X \text{ is } G-homogen \Rightarrow X \text{ is smooth } \Rightarrow \dim X = \dim T_{I} X. \text{(I)}$$

$$G \xrightarrow{4} X \text{ is dominant and } G, X \text{ are irreducible } \Rightarrow$$

$$\exists \text{ an open subset } U \text{ of } G \text{ st.}$$

$$\forall x \in X \text{ and an irreducible compon. } Z \text{ of } \forall^{I}(x), \text{ are have}$$

$$\dim Z = \dim G - \dim X.$$
Since $X = G \cdot X_{0}, \quad \forall^{I}(x) = g_{x}(H,G) \text{ for some } g_{x} \in G.$

$$\Rightarrow \dim H = \dim G - \dim X. \quad \text{(I)}$$

$$(I), (I), (I) \Rightarrow d^{2}t_{l_{e}} \text{ is surjective.}$$

$$I = \frac{Def.}{A quabient of G by H \text{ is a pair } (X, x) \text{ of } a$$

$$G - homoge. \text{ space } X \text{ and } a point x \in X \text{ st. the following}$$

universal property holds:
Y: G-homog. space; Stab_(y)
$$\supseteq$$
 H
 \Rightarrow $\exists !$ G-equivar. morphism $X \stackrel{+}{\to} Y$ st.
 $\Phi(x) = y$.
Theorem. G: affine algebraic; H: closed subgroup
 \Rightarrow A quotient of G by H exists; it is unique;
it is quasi-projective; it is denoted by G/H, and
 $G^{\circ} \rightarrow (G/H)^{\circ}$ is separable.
PF. We have proved the existence of (X, x_{\circ}) st.
 $\bigcirc X : G$ -homogen.; and so smooth (and therefore normal)
 \textcircled{O} Stab $x_{\circ} = H$
 \textcircled{O} $G^{\circ} \rightarrow G^{\circ} \cdot x_{\circ}$ is separable.
(Notice that the uniqueness is a clear conseq. of the quotient space.
(Notice that the uniqueness is a clear conseq. of the universal property.)
Let (Y, y) be a pour of a G-homog. space, and $y \in Y$ st.
Stab(y) \supseteq H. So $\oplus : X \rightarrow Y$, $\oplus (g \cdot x_{\circ}) = g \cdot y$
is a cuell-defined, G-equivariant function. (Set theoretic).
And \oplus is the unique G-equ. map which sends x_{\circ} to y .

Topology. Why is
$$\Rightarrow$$
 continuous ?
Suppose $U \subseteq Y$ is open \Rightarrow
 $\tilde{U} := \tilde{\xi} geG [g. geU \tilde{\xi}$ is open in G, and $\tilde{U}H = \tilde{U}$,
and $\Leftrightarrow^{4}(U) = \Im(\tilde{U})$, where $\Im(g) := g.x_{o}$.
So it is enough to show \Im is an open function.
 $\Im(G) = \Im(G) = \Im(G)$, where $\Im(g) := g.x_{o}$.
So it is enough to show $\Im(G) = g.x_{o}$.
 $\Im(G) = \Im(G) = \Im(G) = \Im(G) = g.$
 $\Im(G) = \Im(G) = \Im(G) = \Im(G) = \Im(G) = \Im(G) = \Im(G)$
 $\Rightarrow \Im(G) = \Im(G = \Im(G) = \Im(G) = \Im(G) = \Im(G) = \Im(G$

$$= \mathfrak{A}^{\mathfrak{f}}(\mathfrak{f})\mathfrak{g}).$$

$$\Rightarrow \operatorname{Im} \mathfrak{P}^{\mathfrak{f}} \subseteq \mathcal{O}_{\mathfrak{g}}(\mathfrak{P}^{\mathfrak{f}}(U))^{\mathfrak{h}}. \text{ Let } \Gamma_{\mathfrak{f}} \subseteq \mathfrak{P}^{\mathfrak{f}}(U) \times \mathbb{A}^{\mathfrak{f}} \text{ be the graph}$$
of \mathfrak{f} ; and
$$\mathbf{G} \longrightarrow \Gamma_{\mathfrak{f}} \longrightarrow \Gamma_{\mathfrak{f}} \longrightarrow \Gamma_{\mathfrak{f}}' \longrightarrow U \times \mathbb{A}^{\mathfrak{f}} \xrightarrow{\mathfrak{P}} U ,$$

$$\mathfrak{P}^{\mathfrak{f}}(U) \times \mathbb{A}^{\mathfrak{f}} \xrightarrow{\mathfrak{P}} (\mathfrak{P}, \mathfrak{d}) = \mathfrak{P}^{\mathfrak{f}}(U) \underbrace{\mathfrak{f}}_{\mathfrak{f}}.$$

$$\operatorname{Chere} \Gamma_{\mathfrak{f}}' = \underbrace{\mathfrak{f}}(\mathfrak{P}(\mathfrak{q}), \mathfrak{f}(\mathfrak{g})) \mid \mathfrak{g} \in \mathfrak{P}^{\mathfrak{f}}(U) \underbrace{\mathfrak{f}}_{\mathfrak{f}}.$$

$$\operatorname{Chere} \Gamma_{\mathfrak{f}}' = \underbrace{\mathfrak{f}}(\mathfrak{Q}(\mathfrak{q}), \mathfrak{f}(\mathfrak{g})) \mid \mathfrak{g} \in \mathfrak{P}^{\mathfrak{f}}(U) \underbrace{\mathfrak{f}}_{\mathfrak{f}}.$$

$$\operatorname{Chere} \Gamma_{\mathfrak{f}}' = \underbrace{\mathfrak{f}}(\mathfrak{Q}(\mathfrak{q}), \mathfrak{f}(\mathfrak{g})) \mid \mathfrak{g} \in \mathfrak{P}^{\mathfrak{f}}(U) \underbrace{\mathfrak{f}}_{\mathfrak{f}}.$$

$$\operatorname{Chere} \Gamma_{\mathfrak{f}}' = \underbrace{\mathfrak{f}}(\mathfrak{q}, \mathfrak{d}) \xrightarrow{\mathfrak{f}}_{\mathfrak{f}} \operatorname{cher} \mathfrak{h}_{\mathfrak{f}} \operatorname{cher} \mathfrak{h}_{\mathfrak{f}}.$$

$$\operatorname{Chere} \Gamma_{\mathfrak{f}}' = \underbrace{\mathfrak{f}}(\mathfrak{q}, \mathfrak{f}(\mathfrak{g})) \mid \mathfrak{g} \in \mathfrak{P}^{\mathfrak{f}}(U) \underbrace{\mathfrak{f}}_{\mathfrak{f}}.$$

$$\operatorname{Chere} \Gamma_{\mathfrak{f}}' = \underbrace{\mathfrak{f}}(\mathfrak{q}, \mathfrak{f}(\mathfrak{g})) \mid \mathfrak{g} \in \mathfrak{P}^{\mathfrak{f}}(U) \underbrace{\mathfrak{f}}_{\mathfrak{f}}.$$

$$\operatorname{Chere} \Gamma_{\mathfrak{f}}' = \underbrace{\mathfrak{f}}(\mathfrak{q}, \mathfrak{f}(\mathfrak{g})) \mid \mathfrak{g} \in \mathfrak{P}^{\mathfrak{f}}(U) \underbrace{\mathfrak{f}}_{\mathfrak{f}}.$$

$$\operatorname{Chere} \mathcal{I}_{\mathfrak{f}}' = \mathfrak{f}(\mathfrak{f}, \mathfrak{f}(\mathfrak{g})) \mid \mathfrak{g} \in \mathfrak{P}^{\mathfrak{f}}(U) \underbrace{\mathfrak{f}}_{\mathfrak{f}}.$$

$$\operatorname{Chere} \mathfrak{f}_{\mathfrak{f}} = \underbrace{\mathfrak{f}}(\mathfrak{f}, \mathfrak{f}(\mathfrak{f})) \mid \mathfrak{g} \in \mathfrak{P}^{\mathfrak{f}}(U) \underbrace{\mathfrak{f}}_{\mathfrak{f}}.$$

$$\operatorname{Chere} \mathfrak{f}_{\mathfrak{f}} = \underbrace{\mathfrak{f}}(\mathfrak{f}, \mathfrak{f}(\mathfrak{f})) \stackrel{\mathfrak{f}}{\mathfrak{f}} \cdot \mathfrak{h} \cdot \mathfrak{h}$$

AlgebraicGroups Page 15

$$f = f_{ig}$$

$$f =$$

N <1 + : ~ Closed VIUTMAL SUBUP J st (I) ker (TC) = N. 2 ker $(d\pi c_{1}) = \text{Lie}(N)$. \bigcirc G/_N is an affine algebraic group. <u>Pf</u>. We have proved $\exists \pi: G \longrightarrow GL(V)$ an algebraic group homomorphism, and a line $l \subseteq V$ s.t. $\square \ zg \in G \mid g \mid = l \rbrace = N$ 2 ₹ x ∈ g | dx [cx (l) ⊆ l] = Lie N. Let v be a non-zero vector in f. Then, for any nEN, $\pi(n) = \chi(n) \vee_0$ for some $\chi(n) \in k^{\times}$. Then () Since TC is a morphism, $\chi: N \rightarrow k$ is a morphism. 2) Since TC is a homomorphism, X: N-+ te is an abstract group homomorphism. One can use (), 2) to show that X: N- GL(k) is an algebraic group homomorphism. (X*(N) := Hom (N, GL, Ck)) is called the set of characters of N.) For any $X \in X(N)$, let $V_X := \{ v \in V \mid \pi(v) = X(v) v \}$; let $V := \sum V_{\chi}$ X < X*(N) Lemma. If X1,..., Xm are distinct characters of a group H and $V_{\chi_1} \neq 0$, then $V_{\chi_1}, ..., V_{\chi_m}$ are linearly independent, i.e.

and $V_{\chi_1} \neq 0$, then $V_{\chi_1}, ..., V_{\chi_m}$ are linearly independent, i.e. $\left(v_{i} \in V_{\chi_{i}} \text{ and } v_{1} + \dots + v_{m} = o\right) \rightarrow v_{i} = o$ If flow You have seen this lemma, when you were studying Galois theory : Suppose m is the smallest positive integer st. $\exists v_i \in V_{\chi_i} \setminus \{v_i\}$ where $\sum_{i=1}^{i} v_i = \cdots$ Let het be st. $\chi_1(h) \neq \chi_2(h)$. Then $\mathbf{o} = \left(\mathbf{h} \cdot \sum_{i=1}^{m} v_{i}\right) - \chi_{\mathbf{1}}(\mathbf{h}) \left(\sum_{i=1}^{m} v_{i}\right) = \sum_{i=1}^{m} \left(\chi_{i}(\mathbf{h}) - \chi_{\mathbf{1}}(\mathbf{h})\right) v_{i}$ $(\chi_2(h) - \chi_1(h))v_2 \in V_2 \setminus Eog$ Corollary. For any group H acting linearly on a vector space V, $|\chi \in Hom(H,k^{x}) | V_{\chi} \neq o | \leq \dim V$ • $\forall g \in G$, $\chi \in \chi^*(N)$, $k^{\partial}\chi : N \rightarrow k^{\times}$, $\overset{\partial}{\chi}(n) := \chi(g^{-1}ng)$ $\Rightarrow {}^{d}\chi \in \chi^{*}(N)$. • $\forall g \in G, \chi \in \chi^*(N), v \in V_{\chi}, n \in N$ $\mathcal{T}(n)\left(\mathcal{T}(q)\mathcal{V}\right) = \mathcal{T}(q)\left(\mathcal{T}(q^{-1}nq)\mathcal{V}\right)$ $= \pi(q) \left(\chi(q^{-1}nq) v \right)$

 $= \frac{d}{x}(n) \pi(q) v$ $\Rightarrow \mathcal{T}(g) \mathcal{V} \in \mathcal{V}_{g_{\chi}}$ $\Rightarrow \overline{V}$ is G-invariant, and $l \subseteq \overline{V}_{\chi} \subseteq \overline{V}$; So, by restricting T(g) to its action on T, who g. we can and will assume $\overline{V} = V$. Let $\{e_{i,\chi}\}\$ be a basis of V_{χ} . Then, in this basis, $\pi(N)$ is of the form: Let $W \subseteq End(\bigoplus \nabla_{\mathcal{X}_i})$ be the subspace consisting of linear maps L s.t. $L(V_{\chi_i}) \subseteq V_{\chi_i}$ for any z. In the above basis, W Cosists of matrices of the form $V_{\chi_1} V_{\chi_2} V_{\chi_m}$ So $W \subseteq C$ (TC(N)); and End(Tr)

(3) ker $\mathfrak{P} = \mathbb{N}$. (4) et is separable; deff is surjective; ker deff = Lie N; Let $\pi: G_1 \rightarrow G_2$ be an algebraic group Theorem homomorphism. Then the following is a bijective algebraic group homomorphism $\overline{\mathcal{T}}: G_1/$ \longrightarrow Im \mathcal{K} , $\frac{\overline{\mathcal{T}}(g \text{ ker } \mathcal{T}):=\mathcal{T}(g); }{\text{Mareover } TFAE: }$ 1) TT is an isomorphism of algebraic groups. 2π is separable. 3 ker $(d\pi)$ = Lie (ker π) $(f) \quad \ker \left(G_1(k[\mathcal{E}]) \xrightarrow{\mathcal{T}_{k[\mathcal{E}]}} G_2(k[\mathcal{E}]) \right) = (\ker \pi)(k[\mathcal{E}])$ 5 dTC is surjective. (Pf. Exercise)