Background on AG: differential of a morphism

Here we briefly review the definition of differential of a morphism $\Rightarrow: X \rightarrow Y$ where X and Y are affine varieties. We will see how deflacts on $T_{\alpha} \times$ under various definitions of $T_{\alpha} \times$:

1st definition. Tx X is the fiber over x of $X(k[\varepsilon]) \longrightarrow X(k)$.

 $d\phi \Big|_{x}(v) = w \quad \text{if} \quad \varphi(x+\epsilon v) = \varphi(x) + \epsilon w.$

Notice that & induces a map X(k[E]) THE Y(k[E])

commutative.

So $v \in T_{\chi} X \implies \chi + \epsilon v \in \chi(k[\epsilon])$

and mod & it is mapped to \$(x)

$$\Rightarrow \phi(x+\epsilon \vee) = \phi(x) + \epsilon \vee \epsilon \vee (k[\epsilon])$$

and we Ty.

Compatibility with calculus!

Suppose $X \subseteq k^n$ and $Y \subseteq k^m$, and $\varphi(x_1,...,x_n) = (f_1(\vec{x}),...,f_m(\vec{x}))$. Then by Taylor exponsion of the polynomials fils at x we have $f_i(x + \epsilon v) = f_i(x) + \epsilon df_i(v)$. So Hence dol: Tx X - Toxy with the given embeddings of TxX st and Tpm Y c tem can be given as the restriction of the linear map given by $J := \begin{bmatrix} \partial_1 f_1(x) & \cdots & \partial_n f_1(x) \end{bmatrix}$. [Notice that It depends on the choice of fi's among the functions with the same rest. to X, but J_{i} just depends on $f_i|_X$.] So $d\phi|_X$ is a linear map from $T_X X$ to $T_{\phi(x)} X$. 2^{nd} definition. $T_{x} X = Der_{k}(k[X], k_{x})$. Let $\phi: X \longrightarrow Y$ be a morphism. So we get the following k[Y] # k[X] diagram: q4/(8) { $k_{\varphi(\chi)} \xrightarrow{=} k_{\chi}$ k[Y] * k[X] makes k=kx a k[Y]-mod:

$$\forall$$
 fek[Y], cekx, f.c = $\phi^*(f)$.c
$$= \phi^*(f)(x) c$$

$$= f(\phi(x)) c$$

which is k

. We have already seen the ϕ^* induces a k-linear map $\operatorname{Der}(k[X],k_X) \longrightarrow \operatorname{Der}(k[Y],k_{\phi(X)})$

$$\delta \mapsto \delta \cdot \varphi^* =: d\varphi |_{\infty} (\delta).$$

Compatibility with the 1st def.

For
$$x \in X(k)$$
; $x + \epsilon y \mapsto \delta_y$
 $X(k[\epsilon])$ Der $(k[X], k_x)$
where $\delta_y([f]) = df(y)$.

Inverse of this map is:

where $\forall f \in k[X]$, $f(x+\epsilon v_s) = f(x) + \epsilon s(f)$.

We have to show
$$\phi(x+\epsilon y_{\delta}) = \phi(x) + \epsilon y_{\delta} + \epsilon y_{\delta}$$

$$\Leftrightarrow (3+8) \Rightarrow (3$$

$$\forall f \in k[Y], f(\varphi(x+\epsilon \vee_{S})) = f(\varphi(x)+\epsilon \vee_{S_{\bullet}}\varphi^{*}) \Leftrightarrow$$

$$\underline{3}^{rd}$$
 definition. $T_x \times = \left(\frac{111_x}{411_x^2}\right)^{\frac{1}{2}}$

Let +: X -> Y be a morphism;

For
$$\ell \in \left(\frac{H^2 / H^2}{H^2 / H^2}\right)^*$$
 and $\ell \in H^2 + H^2 / H^2$

$$\Leftrightarrow \phi^*(f)(x) = 0$$

$$\Leftrightarrow \Leftrightarrow^*(f) \in tr_{\chi}$$

$$\Leftrightarrow \Leftrightarrow^*(411_{\varphi(x)}^2) \subseteq 411_{\chi}^2 \quad | \text{modepen. of the choice of } f.$$

And it is linear in f+ 41/2. So it is well-defined

map
$$d \Leftrightarrow \left(\frac{11 + x}{x} \right)^{\frac{1}{4}} \longrightarrow \left(\frac{11 + x}{x} \right)^{\frac{1}{4}} .$$

Compatibility with the 2nd def.

.
$$\mathcal{E}$$
 \mathcal{E} , where \mathcal{E} Der(k[X], k_x) \mathcal{E} $\mathcal{$

$$\ell_{\delta}(\beta+H_{\chi}^{2}):=\delta(\beta)$$
.

$$\begin{array}{cccc} & \downarrow & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ &$$

For a morphism $\phi: X \longrightarrow Y$, we have to show

which is clean.

$$\frac{4^{th} \text{ definition}}{\sqrt{k}} = \text{Hom}_{k[X]}(\Omega_{k[X]/k}, k_{\chi})$$

Let $\phi: X \longrightarrow Y$ be a morphism. Then $\phi^*: k[Y] \longrightarrow k[X]$

induces a k[Y]-mod. homomorphism ϕ^* : $\Omega_{k[Y]/k} \longrightarrow \Omega_{k[X]/k}$ where ϕ^* : $(d_{k[Y]/k}f) = d_{k[X]/k}\phi^*(f)$.

Then
$$\begin{array}{cccc}
\Omega_{k[Y]/k} & \xrightarrow{\varphi^*} & \Omega_{k[X]/k} \\
\downarrow^{\alpha} & \downarrow^{\alpha} & \downarrow^{\alpha} \\
\downarrow^{\alpha} & \xrightarrow{\varphi(x)} & \downarrow^{\alpha} \\
\downarrow^{\alpha} & \xrightarrow{\varphi(x)} & \downarrow^{\alpha}
\end{array}$$

So
$$d\phi|_{\chi}(x) = x \cdot \phi^{*\circ}$$
.

Compatibility with the 2nd def.

then
$$(\Omega_{k[X]/k}, k_x)$$
 Der $(k[X], k_x)$ where $\delta_{\alpha} = \alpha \circ d_{k[X]/k}$

Let $\phi: X \to Y$ be a morphism. We have to show

$$\mathcal{E}_{\omega} \circ \varphi^* = \mathcal{E}_{\omega \circ \varphi^*} \circ (\omega \wedge y)$$

$$S_{\alpha} \circ \varphi^* = (\alpha \circ d_{\text{RIXI/k}}) \circ \varphi^* \\
= \alpha \circ (d_{\text{RIXI/k}}) \circ \varphi^*) \\
= \alpha \circ \varphi^* \circ d_{\text{RIYI/k}} = S_{\alpha \circ \varphi^*} \circ \varphi^*$$

5th definition $T_{\chi} \times = \Omega_{\text{k[X]/k}} := \text{Hom}_{\chi} (\Omega_{\text{k[X]/k}} \otimes k_{\chi}, k_{\chi})$ Let $\phi: X \to Y$ be a morphism. Then $\phi^*: k[Y] \to k[X]$ induces $\Omega_{\text{k[Y]/k}} \otimes k_{\phi(x)} \to \Omega_{\text{k[X]/k}} \otimes k_{\chi}$ $\omega \otimes 1 \mapsto \phi^*\circ(\omega) \otimes 1$.
Let $d \neq |$ be the dual of $\phi^*\circ(\omega) \otimes 1$. $\forall \ l \in \Omega^*_{\chi} , \forall \ \omega \in \Omega_{\text{k[Y]/k}}$

 $(d\phi)(1)(\omega \otimes 1) := l(\phi^{*\circ}(\omega) \otimes 1).$

Compatibility with the 4th def.

How
$$(\Omega_k[X]/k, k_x)$$
 Hom $(x), k_x$

$$k_x k[X]/k$$

where
$$\hat{\alpha}(\omega \otimes 1) := \alpha(\omega)$$
.

It is an isomorphism (why?)